A widely used assumption in boundary layer meteorology is the z independence of turbulent scalar fluxes Fs throughout the atmospheric surface layer, where z is the distance from the boundary. This assumption is necessary for the usage of Monin-Obukhov Similarity Theory and for the interpretation of eddy covariance measurements of Fs when using them to represent emissions or uptake from the surface. It is demonstrated here that the constant flux assumption offers intrinsic constraints on the third-order turbulent transport of Fs in the unstable atmospheric surface layer. When enforcing z independence of Fs on multilevel Fs measurements collected above different surface cover types, it is shown that increasing instability leads to a novel and universal description of (i) the imbalance between ejecting and sweeping eddy contributions to Fs and (ii) the ratio formed by a dimensionless turbulent transport of Fs and a dimensionless turbulent transport of scalar variance. When combined with structural models for the turbulent transport of Fs, these two findings offer a new perspective on “closing” triple moments beyond conventional gradient diffusion schemes. A practical outcome is a diagnostic of the constant flux assumption from single-level Fs measurements.
more »
« less
Evidence of Mixed Scaling for Mean Profile Similarity in the Stable Atmospheric Surface Layer
Abstract A new mixed scaling parameterZ=z/(Lh)1/2is proposed for similarity in the stable atmospheric surface layer, wherezis the height,Lis the Obukhov length, andhis the boundary layer depth. In comparison with the parameterζ=z/Lfrom Monin–Obukhov similarity theory (MOST), the new parameterZleads to improved mean profile similarity for wind speed and air temperature in large-eddy simulations. It also yields the same linear similarity relation for CASES-99 field measurements, including in the strongly stable (but still turbulent) regime where large deviations from MOST are observed. Results further suggest that similarity for turbulent energy dissipation rate depends on bothZandζ. The proposed mixed scaling ofZand relevance ofhcan be explained by physical arguments related to the limit ofz-less stratification that is reached asymptotically above the surface layer. The presented evidence and fitted similarity relations are promising, but the results and arguments are limited to a small sample of idealized stationary stable boundary layers. Corroboration is needed from independent datasets and analyses, including for complex and transient conditions not tested here.
more »
« less
- Award ID(s):
- 2031312
- PAR ID:
- 10441435
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of the Atmospheric Sciences
- Volume:
- 80
- Issue:
- 8
- ISSN:
- 0022-4928
- Format(s):
- Medium: X Size: p. 2057-2073
- Size(s):
- p. 2057-2073
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A simulation of a supercell storm produced for a prior study on tornado predictability is reanalyzed for the purpose of examining the fine-scale details of tornadogenesis. It is found that the formation of a tornado-like vortex in the simulation differs from how such vortices have been understood to form in previous numerical simulations. The main difference between the present simulation and past ones is the inclusion of a turbulent boundary layer in the storm’s environment in the present case, whereas prior simulations have used a laminar boundary layer. The turbulent environment contains significant near-surface vertical vorticity (ζ> 0.03 s−1atz= 7.5 m), organized in the form of longitudinal streaks aligned with the southerly ground-relative winds. Theζstreaks are associated with corrugations in the vertical plane in the predominantly horizontal, westward-pointing environmental vortex lines; the vortex-line corrugations are produced by the vertical drafts associated with coherent turbulent structures aligned with the aforementioned southerly ground-relative winds (longitudinal coherent structures in the surface layer such as these are well known to the boundary layer and turbulence communities). Theζstreaks serve as focal points for tornadogenesis, and may actually facilitate tornadogenesis, given how near-surfaceζin the environment can rapidly amplify when subjected to the strong, persistent convergence beneath a supercell updraft. Significance StatementIn high-resolution computer simulations of supercell storms that include a more realistic, turbulent environment, the means by which tornado-like vortices form differs from the mechanism identified in prior simulations using a less realistic, laminar environment. One possibility is that prior simulations develop intense vortices for the wrong reasons. Another possibility could be that tornadoes form in a wide range of ways in the real atmosphere, even within supercell storms that appear to be similar, and increasingly realistic computer simulations are finally now capturing that diversity.more » « less
-
Abstract Turbulence parameterizations for convective boundary layer in coarse‐scale atmospheric models usually consider a combination of the eddy‐diffusive transport and a non‐local transport, typically in the form of a mass flux term, such as the widely adopted eddy‐diffusivity mass‐flux (EDMF) approach. These two types of turbulent transport are generally considered to be independent of each other. Using results from large‐eddy simulations, here, we show that a Taylor series expansion of the updraft and downdraft mass‐flux transport can be used to approximate the eddy‐diffusivity transport in the atmospheric surface layer and the lower part of the mixed layer, connecting both eddy‐diffusivity and mass‐flux transport theories in convective conditions, which also quantifies departure from the Monin‐Obukhov similarity (MOS) in the surface layer. This study provides a theoretical support for a unified EDMF parameterization applied to both the surface layer and mixed layer and highlights important correction required for surface models relying on MOS.more » « less
-
We introduce an analytical model that describes the vertical structure of Ekman boundary layer flows coupled to the Monin-Obukhov Similarity Theory (MOST) surface layer repre- sentation, which is valid for conventionally neutral (CNBL) and stable (SBL) atmospheric conditions. The model is based on a self-similar profile of horizontal stress for both CNBL and SBL flows that merges the classic 3/2 power law profile with a MOST-consistent stress profile in the surface layer. The velocity profiles are then obtained from the Ekman momentum balance equation. The same stress model is used to derive a new self-consistent Geostrophic Drag Law (GDL). We determine the ABL height (h) using an equilibrium boundary layer height model and parameterize the surface heat flux for quasi-steady SBL flows as a function of a prescribed surface temperature cooling rate. The ABL height and GDL equations can then be solved together to obtain the friction velocity (u∗) and the cross-isobaric angle (α0) as a function of known input parameters such as the Geostrophic wind speed and surface roughness (z0). We show that the model predictions agree well with simulation data from the literature and newly generated Large Eddy Simulations (LES). These results indicate that the proposed model provides an efficient and relatively accurate self-consistent approach for predicting the mean wind velocity distribution in CNBL and SBL flows.more » « less
-
Abstract Measurements collected by a Remote Environmental Monitoring Units (REMUS) 600 autonomous underwater vehicle (AUV) off the coast of southern California demonstrate large-scale coherent wave-driven vortices, consistent with Langmuir turbulence (LT), and played a dominant role in structuring turbulent dissipation within the oceanic surface boundary layer. During a 10-h period with sustained wind speeds of 10 m s−1, Langmuir circulations were limited to the upper third of the surface mixed layer by persistent stratification within the water column. The ensemble-averaged circulation, calculated using conditional averaging of acoustic Doppler dual current profile (AD2CP) velocity profiles using elevated backscattering intensity associated with subsurface bubble clouds, indicates that LT vortex pairs were characterized by an energetic downwelling zone flanked by broader, weaker upwelling regions with vertical velocity magnitudes similar to previous numerical studies of LT. Horizontally distributed microstructure estimates of turbulent kinetic energy dissipation rates were lognormally distributed near the surface in the wave mixing layer with the majority of values falling between wall layer scaling and wave transport layer scaling. Partitioning dissipation rates between downwelling centers and ambient conditions suggests that LT may play a dominant role in elevating dissipation rates in the ocean surface boundary layer (OSBL) by redistributing wave-breaking turbulence.more » « less
An official website of the United States government
