skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Linking Soil Structure, Hydraulic Properties, and Organic Carbon Dynamics: A Holistic Framework to Study the Impact of Climate Change and Land Management
Abstract Climate change and unsustainable land management practices have resulted in extensive soil degradation, including alteration of soil structure (i.e., aggregate and pore size distributions), loss of soil organic carbon, and reduction of water and nutrient holding capacities. Although soil structure, hydrologic processes, and biogeochemical fluxes are tightly linked, their interaction is often unaccounted for in current ecohydrological, hydrological and terrestrial biosphere models. For more holistic predictions of soil hydrological and biogeochemical cycles, models need to incorporate soil structure and macroporosity dynamics, whether in a natural or agricultural ecosystem. Here, we present a theoretical framework that couples soil hydrologic processes and soil microbial activity to soil organic carbon dynamics through the dynamics of soil structure. In particular, we link the Millennial model for soil carbon dynamics, which explicitly models the formation and breakdown of soil aggregates, to a recent parameterization of the soil water retention and hydraulic conductivity curves and to solute and O2diffusivities to soil microsites based on soil macroporosity. To illustrate the significance of incorporating the dynamics of soil structure, we apply the framework to a case study in which soil and vegetation recover over time from agricultural practices. The new framework enables more holistic predictions of the effects of climate change and land management practices on coupled soil hydrological and biogeochemical cycles.  more » « less
Award ID(s):
2213630
PAR ID:
10441529
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
128
Issue:
7
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wymore, A.S.; Yang, W.H.; Silver, W.L.; McDowell, W.H.; Chorover, J. (Ed.)
    The study of Critical Zone (CZ) biogeochemistry in Intensively Managed Landscapes is a study of transitions. Large-scale anthropogenic inputs in the form of agricultural practices have induced significant shifts in the transport and transformation of water, carbon, and nutrients across the landscape. Disentangling the present-day complexity of physical, biological, and hydrologic CZ processes in intensively managed landscapes requires us to first understand the interplay between underlying natural processes which have occurred over geologic time scales from the overpowering, comparatively abrupt onset of intensive agricultural practices that have dominated the landscape in recent centuries. Modeling provides a unique advantage to extricate such complex processes. Advancements in recent years have improved our ability to elucidate (1) the coevolution of soil organic carbon storage, movement, and decomposition under climate and land cover changes, (2) the impacts of intensive agricultural management practices on age-nutrient dynamics and their consequential modification of rates and landscape fluxes, and (3) the integral regulatory role of vegetation and root exudation on CZ biogeochemical processes. In this chapter, we will review several recent models developed in the Intensively Managed Landscape Critical Zone Observatory in Illinois, USA that advance our understanding of critical transitions in biogeochemical dynamics due to intensive management and discuss future challenges. 
    more » « less
  2. It is essential to identify the dominant flow paths, hot spots and hot periods of hydrological nitrate-nitrogen (NO3-N) losses for developing nitrogen loads reduction strategies in agricultural watersheds. Coupled biogeochemical transformations and hydrological connectivity regulate the spatiotemporal dynamics of water and NO3-N export along surface and subsurface flows. However, modeling performance is usually limited by the oversimplification of natural and human-managed processes and insufficient representation of spatiotemporally varied hydrological and biogeochemical cycles in agricultural watersheds. In this study, we improved a spatially distributed process-based hydro-ecological model (DLEM-catchment) and applied the model to four tile-drained catchments with mixed agricultural management and diverse landscape in Iowa, Midwestern US. The quantitative statistics show that the improved model well reproduced the daily and monthly water discharge, NO3-N concentration and loading measured from 2015 to 2019 in all four catchments. The model estimation shows that subsurface flow (tile flow + lateral flow) dominates the discharge (70%-75%) and NO3-N loading (77%-82%) over the years. However, the contributions of tile drainage and lateral flow vary remarkably among catchments due to different tile-drained area percentages and the presence of farmed potholes (former depressional wetlands that have been drained for agricultural production). Furthermore, we found that agricultural management (e.g. tillage and fertilizer management) and catchment characteristics (e.g. soil properties, farmed potholes, and tile drainage) play important roles in predicting the spatial distributions of NO3-N leaching and loading. The simulated results reveal that the model improvements in representing water retention capacity (snow processes, soil roughness, and farmed potholes) and tile drainage improved model performance in estimating discharge and NO3-N export at a daily time step, while improvement of agricultural management mainly impacts NO3-N export prediction. This study underlines the necessity of characterizing catchment properties, agricultural management practices, flow-specific NO3-N movement, and spatial heterogeneity of NO3-N fluxes for accurately simulating water quality dynamics and predicting the impacts of agricultural conservation nutrient reduction strategies. 
    more » « less
  3. Climate models project changing patterns of precipitation and increases in temperature that modify soil moisture dynamics. Land use and changing frequency and intensity of precipitation can induce changes in soil structure and rooting abundances at timescales shorter than commonly considered. Soil structure is a critical ecosystem that governs water flow through soil profiles and across landscapes, and can influence weathering rates and thus solute release and soil development. We hypothesize that the altered soil structure and modification of rooting depth distributions linked to land use change can influence soil solute concentrations, and that those shifts in solute release are dependent on patterns of precipitation. We installed suction lysimeters to collect soil water for ~3 y in two grassland regions with distinct mean annual precipitation (800 mm y-1, 1100 mm y-1) in native prairie, agriculture, and post-agriculture land uses at depths of 10, 40, and 120 cm. We linked solute concentrations to soil moisture, aggregate-size distribution, pore geometry, and rooting depth distributions to assess how land use change and the altered rooting abundance it imposes can modify soil structure and hydrologic fluxes, and to infer how soil weathering can shift deep in the subsurface. We reveal how soil moisture residence time and the soil pore network can govern solute production, and the importance of precipitation and thus of soil moisture accumulation over growing seasons for mineral weathering and solute production. Specifically, we find that the solubility potential of multiple weathering products and organic carbon increases with precipitation, dominance of relatively small aggregates at the surface, and fewer coarse roots. Enhanced solute concentrations at depth may also reflect transport down-profile. Our findings reveal unintended consequences of land use change that influence important hydrologic dynamics and nutrient cycling in the vadose zone and how deeply and how persistently unexpected consequences of changes in land cover can propagate. 
    more » « less
  4. Abstract. Watersheds are the fundamental Earth surface functioning units that connect the land to aquatic systems. Many watershed-scale models represent hydrological processes but not biogeochemical reactive transport processes. This has limited our capability to understand and predict solute export, water chemistry and quality, and Earth system response to changing climate and anthropogenic conditions. Here we present a recently developed BioRT-Flux-PIHM (BioRT hereafter) v1.0, a watershed-scale biogeochemical reactive transport model. The model augments the previously developed RT-Flux-PIHM that integrates land-surface interactions, surface hydrology, and abiotic geochemical reactions. It enables the simulation of (1) shallow and deep-water partitioning to represent surface runoff, shallow soil water, and deeper groundwater and of (2) biotic processes including plant uptake, soil respiration, and nutrient transformation. The reactive transport part of the code has been verified against the widely used reactive transport code CrunchTope. BioRT-Flux-PIHM v1.0 has recently been applied in multiple watersheds under diverse climate, vegetation, and geological conditions. This paper briefly introduces the governing equations and model structure with a focus on new aspects of the model. It also showcases one hydrology example that simulates shallow and deep-water interactions and two biogeochemical examples relevant to nitrate and dissolved organic carbon (DOC). These examples are illustrated in two simulation modes of complexity. One is the spatially lumped mode (i.e., two land cells connected by one river segment) that focuses on processes and average behavior of a watershed. Another is the spatially distributed mode (i.e., hundreds of cells) that includes details of topography, land cover, and soil properties. Whereas the spatially lumped mode represents averaged properties and processes and temporal variations, the spatially distributed mode can be used to understand the impacts of spatial structure and identify hot spots of biogeochemical reactions. The model can be used to mechanistically understand coupled hydrological and biogeochemical processes under gradients of climate, vegetation, geology, and land use conditions. 
    more » « less
  5. River networks serve as conduits for dissolved organic matter (DOM) and carbon (DOC) from inland to coastal waters. Human activities and climate change are altering DOM sources, causing hydrological and biogeochemical shifts that impact DOC concentrations and changing the transport and transformation of DOM and DOC. Here, we synthesize current knowledge of changing DOM sources, DOC concentrations, and the associated hydrological and biogeochemical changes during transport along inland-to-coastal gradients, focusing on impacts to coastal and estuarine DOM and DOC. We project that continued land-use changes, hydrological management, and sea-level rise will result in more microbial and labile DOM, higher DOC concentrations, and an overall decoupling of DOC quantity and DOM quality. Understanding how these changes vary among river networks is essential to forecast coastal and estuarine water quality, ecosystem health, and global carbon cycling. 
    more » « less