skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Centrifugally spun PVP / ZnO composite fibers with different surfactants and their use as antibacterial agents
Abstract

Polyvinylpyrrolidone (PVP) fibers embedded with Zinc Oxide nanoparticles (ZnO NPs) were prepared by the centrifugal spinning of aqueous PVP solutions and ZnO NPs. The ZnO NPs were synthesized and coated with either cetyltrimethylammonium bromide or hexadecyltrimethylammonium bromide. The structure and morphology of the nanocomposite fibers were studied using scanning electron microscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, Fourier transformed infrared spectroscopy and Thermogravimetric analysis. The effect of surfactant coating on the antibacterial activity of ZnO NPs and PVP/ZnO nanocomposite fibers againstEscherichia coli(E. coli) andBacillus megaterium(B. megaterium) bacteria was systematically investigated. The present study indicated that coating the ZnO NPs with surfactants resulted in large and uniform inhibition of bacterial growth.

 
more » « less
Award ID(s):
2122178
PAR ID:
10441551
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Applied Polymer Science
Volume:
140
Issue:
38
ISSN:
0021-8995
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This research provides a new method for preparing nanoparticle‐coated viscose nonwoven fabrics, which has broad application prospects in the functional fiber industry. In this work amino‐terminated hyperbranched polymer (HBP)‐capped Selenium nanoparticles (Se NPs) were synthesized for coating viscose nonwoven fabric (VNF) via impregnation method to produce a controllable and uniform Se NPs coating on the viscose fiber surface. The prepared Se NPs and the treated VNF were characterized by the transmission electron microscope (TEM), x‐ray diffraction (XRD), x‐ray photoelectron spectroscopy (XPS), field emission scanning electron microcopy (FE‐SEM), and antibacterial measurement. The results indicate that the Se NPs were spherical shaped with an average size of 50 nm. FESEM, XRD, and XPS characterizations demonstrated that Se NPs can adsorbed and distributed uniformly on the fiber surface. Se NPs‐coated VNF showed above 99.9% bacterial reduction ofStaphylococcus aureusandEscherichia coliwhile the Se element content on VNF was about 2.92 mg/g.

     
    more » « less
  2. Abstract

    Copper nanoparticles (CuNPs) embedded in polyvinylpyrrolidone (PVP) and polyethylene oxide (PEO) fiber‐matrices were prepared through centrifugal spinning of PVP/ethanol and PEO/aqueous solutions, respectively. The prime focus of the current study is to investigate the antibacterial activity of composite fibers againstEscherichia coli(E. coli) andBacillus cereus(B. cereus) bacteria. During the fiber formation, the centrifugal spinning parameters such as spinneret rotational speed, spinneret to collector distance, and relative humidity were carefully chosen to obtain long and continuous fibers. The structural and morphological analyses of both composite fibers were investigated using scanning electron microscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, and thermogravimetric analysis. In the antibacterial test, PVP/Cu and PEO/Cu composite fibrous membranes exhibited inhibition efficiency of 99.98% and 99.99% againstE. coliandB. cereusbacteria, respectively. Basically, CuNPs were well embedded in the fibrous membrane at the nanoscale level, which facilitated the inhibition of bacterial functions through the inactivation of the chemical structure of the cells. Such an effective antibacterial agent obtained from forcespun composite fibers could be promising candidates for biomedical applications.

     
    more » « less
  3. null (Ed.)
    Abstract This paper presents research results of biocidal effect of thermoplastic- polyester-elastomer (TPE-E) with incorporation of hybrid Ag/ZnO/SiO 2 NPs (silver/Zinc oxide/SiO 2 nanoparticles). These results were compared with various gamma-irradiated doses and processing techniques including extrusion, injection molding and compression molding. In all these processing techniques the TPE-E was mixed with mineral oil and Ag/ZnO/SiO 2 nanoparticles. The TPE-E nanocomposites were characterized by differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), Infrared FT spectroscopy (FTIR), surface enhanced Raman technique ( SERS), FESEM (Field emission scanning electron microscopy), Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), TEM (transmission electronic microscopy) and antimicrobial test. Antibacterial activity against E. coli and S. aureus , are reported and these results showed potential application in health care products. 
    more » « less
  4. Abstract

    Zinc oxide nanoparticles (ZnO NPs) are versatile and promising, with diverse applications in environmental remediation, nanomedicine, cancer treatment, and drug delivery. In this study, ZnO NPs were synthesized utilizing extracts derived fromAcacia catechu, Artemisia vulgaris, andCynodon dactylon. The synthesized ZnO NPs showed an Ultraviolet–visible spectrum at 370 nm, and X-ray diffraction analysis indicated the hexagonal wurtzite framework with the average crystallite size of 15.07 nm, 16.98 nm, and 18.97 nm for nanoparticles synthesized utilizingA. catechu, A. vulgaris,andC. dactylonrespectively. Scanning electron microscopy (SEM) demonstrated spherical surface morphology with average diameters of 18.5 nm, 17.82 nm, and 17.83 nm for ZnO NPs prepared fromA. catechu, A. vulgaris, andC. dactylon,respectively. Furthermore, ZnO NPs tested againstStaphylococcus aureus, Kocuria rhizophila, Klebsiella pneumonia,andShigella sonneidemonstrated a zone of inhibition of 8 to 14 mm. The cell viability and cytotoxicity effects of ZnO NPs were studied on NIH-3T3 mouse fibroblast cells treated with different concentrations (5 μg/mL, 10 μg/mL, and 50 μg/mL). The results showed biocompatibility of all samples, except with higher doses causing cell death. In conclusion, the ZnO NPs synthesized through plant-mediated technique showed promise for potential utilization in various biomedical applications in the future.

     
    more » « less
  5. This article belongs to the Special Issue Synthesis and Applications of Gold Nanoparticles) Rodolphe Antoine (Ed.)

    This research focuses on the plant-mediated green synthesis process to produce gold nanoparticles (Au NPs) using upland cress (Barbarea verna), as various biomolecules within the upland cress act as both reducing and capping agents. The synthesized gold nanoparticles were thoroughly characterized using UV-vis spectroscopy, surface charge (zeta potential) analysis, scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and X-ray diffraction (XRD). The results indicated the synthesized Au NPs are spherical and well-dispersed with an average diameter ~11 nm and a characteristic absorbance peak at ~529 nm. EDX results showed an 11.13% gold content. Colloidal Au NP stability was confirmed with a zeta potential (ζ) value of −36.8 mV. X-ray diffraction analysis verified the production of crystalline face-centered cubic gold. Moreover, the antimicrobial activity of the Au NPs was evaluated using Gram-negative Escherichiacoli and Gram-positive Bacillus megaterium. Results demonstrated concentration-dependent antimicrobial properties. Lastly, applications of the Au NPs in catalysis and biomedicine were evaluated. The catalytic activity of Au NPs was demonstrated through the conversion of 4-nitrophenol to 4-aminophenol which followed first-order kinetics. Cellular uptake and cytotoxicity were evaluated using both BMSCs (stem) and HeLa (cancer) cells and the results were cell type dependent. The synthesized Au NPs show great potential for various applications such as catalysis, pharmaceutics, and biomedicine.

     
    more » « less