Abstract MotivationTrait‐based studies remain limited by the quality and scope of the underlying trait data available. Most of the existing trait databases treat species traits as fixed across time, with any potential temporal variation in the measured traits being unavailable. This is despite the fact that many species are well known to show plasticity in their trait characteristics over the course of the year. This data paper describes a compilation of species‐specific dietary preferences and their known intra‐annual variation for over 10,000 of the world's extant bird species (SAviTraits 1.0). Information on dietary preferences was obtained from the Cornell Lab of Ornithology Birds of the World (BOW) online database. Textual descriptions of species' dietary preferences were translated into semi‐quantitative information denoting the proportion of dietary categories utilized by each species. Temporal variation in dietary attributes was captured at a monthly temporal resolution. We describe the methods for data discovery and translation and present tools for summarizing the annual variability of avian dietary preferences. Altogether, we were able to document a seasonal variability in dietary attributes for a total of 1031 species (ca. 10%). For the remaining species, the dietary attributes were either temporally stationary or the information on temporal variability of the diet was not available. Main Types of Variable ContainedTemporally‐varying dietary traits for birds. Spatial Location and GrainN/A. Time Period and GrainVariation in diet was captured at a monthly temporal resolution. Major Taxa and Level of MeasurementBirds, species level. Software Format.csv/.rds
more »
« less
Frugivoria: A trait database for birds and mammals exhibiting frugivory across contiguous Neotropical moist forests
Abstract MotivationBiodiversity in many areas is rapidly declining because of global change. As such, there is an urgent need for new tools and strategies to help identify, monitor and conserve biodiversity hotspots. This is especially true for frugivores, species consuming fruit, because of their important role in seed dispersal and maintenance of forest structure and health. One way to identify these areas is by quantifying functional diversity, which measures the unique roles of species within a community and is valuable for conservation because of its relationship with ecosystem functioning. Unfortunately, the functional trait information required for these studies can be sparse for certain taxa and specific traits and difficult to harmonize across disparate data sources, especially in biodiversity hotspots. To help fill this need, we compiled Frugivoria, a trait database containing ecological, life‐history, morphological and geographical traits for mammals and birds exhibiting frugivory. Frugivoria encompasses species in contiguous moist montane forests and adjacent moist lowland forests of Central and South America—the latter specifically focusing on the Andean states. Compared with existing trait databases, Frugivoria harmonizes existing trait databases, adds new traits, extends traits originally only available for mammals to birds also and fills gaps in trait categories from other databases. Furthermore, we create a cross‐taxa subset of shared traits to aid in analysis of mammals and birds. In total, Frugivoria adds 8662 new trait values for mammals and 14,999 for birds and includes a total of 45,216 trait entries with only 11.37% being imputed. Frugivoria also contains an open workflow that harmonizes trait and taxonomic data from disparate sources and enables users to analyse traits in space. As such, this open‐access database, which aligns with FAIR data principles, fills a major knowledge gap, enabling more comprehensive trait‐based studies of species in this ecologically important region. Main Types of Variable ContainedEcological, life‐history, morphological and geographical traits. Spatial Location and GrainNeotropical countries (Mexico, Guatemala, Costa Rica, Panama, El Salvador, Belize, Nicaragua, Ecuador, Colombia, Peru, Bolivia, Argentina, Venezuela and Chile) with contiguous montane regions. Time Period and GrainIUCN spatial data: obtained February 2023, spanning range maps collated from 1998 to 2022. IUCN species data: obtained June 2019–September 2022. Newly included traits: span 1924 to 2023. Major Taxa and Level of MeasurementClasses Mammalia and Aves; 40,074 species‐level traits; 5142 imputed traits for 1733 species (mammals: 582; birds: 1147) and 16 sub‐species (mammals). Software Format.csv; R.
more »
« less
- Award ID(s):
- 2200792
- PAR ID:
- 10441578
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Ecology and Biogeography
- Volume:
- 32
- Issue:
- 9
- ISSN:
- 1466-822X
- Page Range / eLocation ID:
- p. 1466-1484
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract MotivationTraits are increasingly being used to quantify global biodiversity patterns, with trait databases growing in size and number, across diverse taxa. Despite growing interest in a trait‐based approach to the biodiversity of the deep sea, where the impacts of human activities (including seabed mining) accelerate, there is no single repository for species traits for deep‐sea chemosynthesis‐based ecosystems, including hydrothermal vents. Using an international, collaborative approach, we have compiled the first global‐scale trait database for deep‐sea hydrothermal‐vent fauna – sFDvent (sDiv‐funded trait database for theFunctionalDiversity ofvents). We formed a funded working group to select traits appropriate to: (a) capture the performance of vent species and their influence on ecosystem processes, and (b) compare trait‐based diversity in different ecosystems. Forty contributors, representing expertise across most known hydrothermal‐vent systems and taxa, scored species traits using online collaborative tools and shared workspaces. Here, we characterise the sFDvent database, describe our approach, and evaluate its scope. Finally, we compare the sFDvent database to similar databases from shallow‐marine and terrestrial ecosystems to highlight how the sFDvent database can inform cross‐ecosystem comparisons. We also make the sFDvent database publicly available online by assigning a persistent, unique DOI. Main types of variable containedSix hundred and forty‐six vent species names, associated location information (33 regions), and scores for 13 traits (in categories: community structure, generalist/specialist, geographic distribution, habitat use, life history, mobility, species associations, symbiont, and trophic structure). Contributor IDs, certainty scores, and references are also provided. Spatial location and grainGlobal coverage (grain size: ocean basin), spanning eight ocean basins, including vents on 12 mid‐ocean ridges and 6 back‐arc spreading centres. Time period and grainsFDvent includes information on deep‐sea vent species, and associated taxonomic updates, since they were first discovered in 1977. Time is not recorded. The database will be updated every 5 years. Major taxa and level of measurementDeep‐sea hydrothermal‐vent fauna with species‐level identification present or in progress. Software format.csv and MS Excel (.xlsx).more » « less
-
Abstract AimAddressing global environmental challenges requires access to biodiversity data across wide spatial, temporal and taxonomic scales. Availability of such data has increased exponentially recently with the proliferation of biodiversity databases. However, heterogeneous coverage, protocols, and standards have hampered integration among these databases. To stimulate the next stage of data integration, here we present a synthesis of major databases, and investigate (a) how the coverage of databases varies across taxonomy, space, and record type; (b) what degree of integration is present among databases; (c) how integration of databases can increase biodiversity knowledge; and (d) the barriers to database integration. LocationGlobal. Time periodContemporary. Major taxa studiedPlants and vertebrates. MethodsWe reviewed 12 established biodiversity databases that mainly focus on geographic distributions and functional traits at global scale. We synthesized information from these databases to assess the status of their integration and major knowledge gaps and barriers to full integration. We estimated how improved integration can increase the data coverage for terrestrial plants and vertebrates. ResultsEvery database reviewed had a unique focus of data coverage. Exchanges of biodiversity information were common among databases, although not always clearly documented. Functional trait databases were more isolated than those pertaining to species distributions. Variation and potential incompatibility of taxonomic systems used by different databases posed a major barrier to data integration. We found that integration of distribution databases could lead to increased taxonomic coverage that corresponds to 23 years’ advancement in data accumulation, and improvement in taxonomic coverage could be as high as 22.4% for trait databases. Main conclusionsRapid increases in biodiversity knowledge can be achieved through the integration of databases, providing the data necessary to address critical environmental challenges. Full integration across databases will require tackling the major impediments to data integration: taxonomic incompatibility, lags in data exchange, barriers to effective data synchronization, and isolation of individual initiatives.more » « less
-
Abstract AimTropical regions harbour over half of the world's mammals and birds, but how their communities have assembled over evolutionary timescales remains unclear. To compare eco‐evolutionary assembly processes between tropical mammals and birds, we tested how hypotheses concerning niche conservatism, environmental stability, environmental heterogeneity and time‐for‐speciation relate to tropical vertebrate community phylogenetic and functional structure. LocationTropical rainforests worldwide. Time periodPresent. Major taxa studiedGround‐dwelling and ground‐visiting mammals and birds. MethodsWe used in situ observations of species identified from systematic camera trap sampling as realized communities from 15 protected tropical rainforests in four tropical regions worldwide. We quantified standardized phylogenetic and functional structure for each community and estimated the multi‐trait phylogenetic signal (PS) in ecological strategies for the four regional species pools of mammals and birds. Using linear regression models, we test three non‐mutually exclusive hypotheses by comparing the relative importance of colonization time, palaeo‐environmental changes in temperature and land cover since 3.3 Mya, contemporary seasonality in temperature and productivity and environmental heterogeneity for predicting community phylogenetic and functional structure. ResultsPhylogenetic and functional structure showed non‐significant yet varying tendencies towards clustering or dispersion in all communities. Mammals had stronger multi‐trait PS in ecological strategies than birds (mean PS: mammal = 0.62, bird = 0.43). Distinct dominant processes were identified for mammal and bird communities. For mammals, colonization time and elevation range significantly predicted phylogenetic clustering and functional dispersion tendencies respectively. For birds, elevation range and contemporary temperature seasonality significantly predicted phylogenetic and functional clustering tendencies, respectively, while habitat diversity significantly predicted functional dispersion tendencies. Main conclusionsOur results reveal different eco‐evolutionary assembly processes structuring contemporary tropical mammal and bird communities over evolutionary timescales that have shaped tropical diversity. Our study identified marked differences among taxonomic groups in the relative importance of historical colonization and sensitivity to environmental change.more » « less
-
Abstract AimWe investigate geographic patterns across taxonomic, ecological and phylogenetic diversity to test for spatial (in)congruency and identify aggregate diversity hotspots in relationship to present land use and future climate. Simulating extinctions of imperilled species, we demonstrate where losses across diversity dimensions and geography are predicted. LocationNorth America. Time periodPresent day, future. Major taxa studiedRodentia. MethodsUsing geographic range maps for rodent species, we quantified spatial patterns for 11 dimensions of diversity: taxonomic (species, range weighted), ecological (body size, diet and habitat), phylogenetic (mean, variance, and nearest‐neighbour patristic distances, phylogenetic distance and genus‐to‐species ratio) and phyloendemism. We tested for correlations across dimensions and used spatial residual analyses to illustrate regions of pronounced diversity. We aggregated diversity hotspots in relationship to predictions of land‐use and climate change and recalculated metrics following extinctions of IUCN‐listed imperilled species. ResultsTopographically complex western North America hosts high diversity across multiple dimensions: phyloendemism and ecological diversity exceed predictions based on taxonomic richness, and phylogenetic variance patterns indicate steep gradients in phylogenetic turnover. An aggregate diversity hotspot emerges in the west, whereas spatial incongruence exists across diversity dimensions at the continental scale. Notably, phylogenetic metrics are uncorrelated with ecological diversity. Diversity hotspots overlap with land‐use and climate change, and extinctions predicted by IUCN status are unevenly distributed across space, phylogeny or ecological groups. Main conclusionsComparison of taxonomic, ecological and phylogenetic diversity patterns for North American rodents clearly shows the multifaceted nature of biodiversity. Testing for geographic patterns and (in)congruency across dimensions of diversity facilitates investigation into underlying ecological and evolutionary processes. The geographic scope of this analysis suggests that several explicit regional challenges face North American rodent fauna in the future. Simultaneous consideration of multi‐dimensional biodiversity allows us to assess what critical functions or evolutionary history we might lose with future extinctions and maximize the potential of our conservation efforts.more » « less
An official website of the United States government
