skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Precipitation timing and soil substrate drive phenology and fitness of Arabidopsis thaliana in a Mediterranean environment
Abstract In Mediterranean climates, the timing of seasonal rains determines germination, flowering phenology and fitness. As climate change alters seasonal precipitation patterns, it is important to ask how these changes will affect the phenology and fitness of plant populations. We addressed this question experimentally with the annual plant speciesArabidopsis thaliana.In a first experiment, we manipulated the date of rainfall onset and recorded germination phenology on sand and soil substrates. In a second experiment, we manipulated germination date, growing season length and mid‐season drought to measure their effects on flowering time and fitness. Within each experiment, we manipulated seed dormancy and flowering time using multilocus near‐isogenic lines segregating strong and weak alleles of the seed dormancy geneDOG1and the flowering time geneFRI. We synthesized germination phenology data from the first experiment with fitness functions from the second experiment to project population fitness under different seasonal rainfall scenarios.Germination phenology tracked rainfall onset but was slower and more variable on sand than on soil. Many seeds dispersed on sand in spring and summer delayed germination until the cooler temperatures of autumn. The high‐dormancyDOG1allele also prevented immediate germination in spring and summer. Germination timing strongly affected plant fitness. Fecundity was highest in the October germination cohort and declined in spring germinants. The late floweringFRIallele had lower fecundity, especially in early fall and spring cohorts. Projections of population fitness revealed that: (1) Later onset of autumn rains will negatively affect population fitness. (2) Slow, variable germination on sand buffers populations against fitness impacts of variable spring and summer rainfall. (3) Seasonal selection favours high dormancy and early flowering genotypes in a Mediterranean climate with hot dry summers. The high‐dormancyDOG1allele delayed germination of spring‐dispersed fresh seeds until more favourable early fall conditions, resulting in higher projected population fitness.These findings suggest that Mediterranean annual plant populations are vulnerable to changes in seasonal precipitation, especially in California where rainfall onset is already occurring later. The fitness advantage of highly dormant, early flowering genotypes helps explain the prevalence of this strategy in Mediterranean populations. Read the freePlain Language Summaryfor this article on the Journal blog.  more » « less
Award ID(s):
1831913
PAR ID:
10441596
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Functional Ecology
Volume:
37
Issue:
9
ISSN:
0269-8463
Page Range / eLocation ID:
p. 2471-2487
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The seasonal timing of life history transitions is often critical to fitness, and many organisms rely upon environmental cues to match life cycle events with favorable conditions. In plants, the timing of seed germination is mediated by seasonal cues such as rainfall and temperature. Variation in cue responses among species can reflect evolutionary processes and adaptation to local climate and can affect vulnerability to changing conditions. Indeed, climate change is altering the timing of precipitation, and germination responses to such change can have consequences for individual fitness, population dynamics, and species distributions. Here, we assessed responses to the seasonal timing of germination‐triggering rains for eleven species spanning theStreptanthus/Caulanthusclade (Brassicaceae). To do so, we experimentally manipulated the onset date of rainfall events, measured effects on germination fraction, and evaluated whether responses were constrained by evolutionary relationships across the phylogeny. We then explored the possible consequences of these responses to contemporary shifts in precipitation timing. Germination fractions decreased with later onset of rains and cooler temperatures for all but threeCaulanthusspecies. Species' germination responses to the timing of rainfall and seasonal temperatures were phylogenetically constrained, withCaulanthusspecies appearing less responsive. Further, four species are likely already experiencing significant decreases in germination fractions with observed climate change, which has shifted the timing of rainfall towards the cooler, winter months in California. Overall, our findings emphasize the sensitivity of germination to seasonal conditions, underscore the importance of interacting environmental cues, and highlight vulnerability to shifting precipitation patterns with climate change, particularly in more northern, mesic species. 
    more » « less
  2. Abstract Despite a global footprint of shifts in flowering phenology in response to climate change, the reproductive consequences of these shifts are poorly understood. Furthermore, it is unknown whether altered flowering times affect plant population viability.We examine whether climate change‐induced earlier flowering has consequences for population persistence by incorporating reproductive losses from frost damage (a risk of early flowering) into population models of a subalpine sunflower (Helianthella quinquenervis). Using long‐term demographic data for three populations that span the species’ elevation range (8–15 years, depending on the population), we first examine how snowmelt date affects plant vital rates. To verify vital rate responses to snowmelt date experimentally, we manipulate snowmelt date with a snow removal experiment at one population. Finally, we construct stochastic population projection models and Life Table Response Experiments for each population.We find that populations decline (λs < 1) as snowmelt dates become earlier. Frost damage to flower buds, a consequence of climate change‐induced earlier flowering, does not contribute strongly to population declines. Instead, we find evidence that negative effects on survival, likely due to increased drought risk during longer growing seasons, drive projected population declines under earlier snowmelt dates.Synthesis.Shifts in flowering phenology are a conspicuous and important aspect of biological responses to climate change, but here we show that the phenology of reproductive events can be unreliable measures of threats to population persistence, even when earlier flowering is associated with substantial reproductive losses. Evidence for shifts in reproductive phenology, along with scarcer evidence that these shifts actually influence reproductive success, are valuable but can paint an incomplete and even misleading picture of plant population responses to climate change. 
    more » « less
  3. Abstract Flowering phenology can vary considerably even at fine spatial scales, potentially leading to temporal reproductive isolation among habitat patches. Climate change could alter flowering synchrony, and hence temporal isolation, if plants in different microhabitats vary in their phenological response to climate change. Despite the importance of temporal isolation in determining patterns of gene flow, and hence population genetic structure and local adaptation, little is known about how changes in climate affect temporal isolation within populations.Here, we use flowering phenology and floral abundance data of 50 subalpine plant species over 44 years to test whether temporal isolation between habitat patches is affected by spring temperature. For each species and year, we analysed temporal separation in peak flowering and flowering overlap between habitat patches separated by 5–950 m.Across our study species, warmer springs were associated with more temporal differentiation in flowering peaks among habitat patches, and less flowering overlap, increasing potential for temporal isolation within populations.Synthesis. By reducing opportunities for mating among plants in nearby habitat patches, our results suggest that warmer springs may reduce opportunities for gene flow within populations, and, consequently, the capacity of plant populations to adapt to environmental changes. 
    more » « less
  4. Summary The timing of a developmental transition (phenology) can influence the environment experienced by subsequent life stages. When phenology causes an organism to occupy a particular habitat as a consequence of the developmental cues used, it can act as a form of habitat tracking. Evolutionary theory predicts that habitat tracking can alter the strength, direction, and mode of natural selection on subsequently expressed traits.To test whether germination phenology altered natural selection on postgermination traits, we manipulated germination time by planting seedlings in seven germination cohorts spanning 2 yr. We measured selection on postgermination traits relating to drought, freezing, and heat tolerance using a diverse combination ofArabidopsis thalianamutants and naturally occurring ecotypes.Germination cohorts experienced variable selection: when dry, cold, and hot environments were experienced by seedlings, selection was intensified for drought, freezing, and heat tolerance, respectively. Reciprocally, postgermination traits modified the optimal germination time; genotypes had maximum fitness after germinating in environments that matched their physiological tolerances.Our results support the theoretical predictions of feedbacks between habitat tracking and traits expressed after habitat selection. In natural populations, whether phenological shifts alter selection on subsequently expressed traits will depend on the effectiveness of habitat tracking through phenology. 
    more » « less
  5. Abstract Increasing temperatures during climate change are known to alter the phenology across diverse plant taxa, but the evolutionary outcomes of these shifts are poorly understood. Moreover, plant temperature‐sensing pathways are known to interact with competition‐sensing pathways, yet there remains little experimental evidence for how genotypes varying in temperature responsiveness react to warming in realistic competitive settings.We compared flowering time and fitness responses to warming and competition for two near‐isogenic lines (NILs) ofArabidopsis thalianatransgressively segregating temperature‐sensitive and temperature‐insensitive alleles for major‐effect flowering time genes. We grew focal plants of each genotype in intraspecific and interspecific competition in four treatments contrasting daily temperature profiles in summer and fall under contemporary and warmed conditions. We measured phenology and fitness of focal plants to quantify plastic responses to season, temperature and competition and the dependence of these responses on flowering time genotype.The temperature‐insensitive NIL was constitutively early flowering and less fit, except in a future‐summer climate in which its fitness was higher than the later flowering, temperature‐sensitive NIL in low competition. The late‐flowering NIL showed accelerated flowering in response to intragenotypic competition and to increased temperature in the summer but delayed flowering in the fall. However, its fitness fell with rising temperatures in both seasons, and in the fall its marginal fitness gain from decreasing competition was diminished in the future.Functional alleles at temperature‐responsive genes were necessary for plastic responses to season, warming and competition. However, the plastic genotype was not the most fit in every experimental condition, becoming less fit than the temperature‐canalized genotype in the warm summer treatment.Climate change is often predicted to have deleterious effects on plant populations, and our results show how increased temperatures can act through genotype‐dependent phenology to decrease fitness. Furthermore, plasticity is not necessarily adaptive in rapidly changing environments since a nonplastic genotype proved fitter than a plastic genotype in a warming climate treatment. Aplain language summaryis available for this article. 
    more » « less