skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid and automated lipid profiling by nuclear magnetic resonance spectroscopy using neural networks
Abstract Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for quantitative metabolomics; however, quantification of metabolites from NMR data is often a slow and tedious process requiring user input and expertise. In this study, we propose a neural network approach for rapid, automated lipid identification and quantification from NMR data. Multilayered perceptron (MLP) networks were developed with NMR spectra as the input and lipid concentrations as output. Three large synthetic datasets were generated, each with 55,000 spectra from an original 30 scans of reference standards, by using linear combinations of standards and simulating experimental‐like modifications (line broadening, noise, peak shifts, baseline shifts) and common interference signals (water, tetramethylsilane, extraction solvent), and were used to train MLPs for robust prediction of lipid concentrations. The performances of MLPS were first validated on various synthetic datasets to assess the effect of incorporating different modifications on their accuracy. The MLPs were then evaluated on experimentally acquired data from complex lipid mixtures. The MLP‐derived lipid concentrations showed high correlations and slopes close to unity for most of the quantified lipid metabolites in experimental mixtures compared with ground‐truth concentrations. The most accurate, robust MLP was used to profile lipids in lipophilic hepatic extracts from a rat metabolomics study. The MLP lipid results analyzed by two‐way ANOVA for dietary and sex differences were similar to those obtained with a conventional NMR quantification method. In conclusion, this study demonstrates the potential and feasibility of a neural network approach for improving speed and automation in NMR lipid profiling and this approach can be easily tailored to other quantitative, targeted spectroscopic analyses in academia or industry.  more » « less
Award ID(s):
2237314
PAR ID:
10441914
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
NMR in Biomedicine
ISSN:
0952-3480
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background: Quantification of metabolites from nuclear magnetic resonance (NMR) spectra in an accurate, high-throughput manner requires effective data processing tools. Neural networks are relatively underexplored in quantitative NMR metabolomics despite impressive speed and throughput compared to more conventional peak-fitting metabolomics software. Methods: This work investigates practices for dataset and model development in the task of metabolite quantification directly from simulated NMR spectra for three neural network models: the multi-layered perceptron, the convolutional neural network, and the transformer. Model architectures, training parameters, and training datasets are optimized before comparing each model on simulated 400-MHz 1H-NMR spectra of complex mixtures with 8, 44, or 86 metabolites to quantify in spectra ranging from simple to highly complex and overlapping peaks. The optimized models were further validated on spectra at 100- and 800-MHz. Results: The transformer was the most effective network for NMR metabolite quantification, especially as the number of metabolites per spectra increased or target concentrations were low or had a large dynamic range. Further, the transformer was able to accurately quantify metabolites in simulated spectra from 100-MHz up to 800-MHz. Conclusions: The methods developed in this work reveal that transformers have the potential to accurately perform fully automated metabolite quantification in real-time and, with further development with experimental data, could be the basis for automated quantitative NMR metabolomics software. 
    more » « less
  2. Neural networks (NNs) are emerging as a rapid and scalable method for quantifying metabolites directly from nuclear magnetic resonance (NMR) spectra, but the nonlinear nature of NNs precludes understanding of how a model makes predictions. This study implements an explainable artificial intelligence algorithm called integrated gradients (IG) to elucidate which regions of input spectra are the most important for the quantification of specific analytes. The approach is first validated in simulated mixture spectra of eight aqueous metabolites and then investigated in experimentally acquired lipid spectra of a reference standard mixture and a murine hepatic extract. The IG method revealed that, like a human spectroscopist, NNs recognize and quantify analytes based on an analyte’s respective resonance line-shapes, amplitudes, and frequencies. NNs can compensate for peak overlap and prioritize specific resonances most important for concentration determination. Further, we show how modifying a NN training dataset can affect how a model makes decisions, and we provide examples of how this approach can be used to de-bug issues with model performance. Overall, results show that the IG technique facilitates a visual and quantitative understanding of how model inputs relate to model outputs, potentially making NNs a more attractive option for targeted and automated NMR-based metabolomics. 
    more » « less
  3. Background: The introduction of benchtop NMR instruments has made NMR spectroscopy a more accessible, affordable option for research and industry, but the lower spectral resolution and SNR of a signal acquired on low magnetic field spectrometers may complicate the quantitative analysis of spectra. Methods: In this work, we compare the performance of multiple neural network architectures in the task of converting simulated 100 MHz NMR spectra to 400 MHz with the goal of improving the quality of the low-field spectra for analyte quantification. Multi-layered perceptron networks are also used to directly quantify metabolites in simulated 100 and 400 MHz spectra for comparison. Results: The transformer network was the only architecture in this study capable of reliably converting the low-field NMR spectra to high-field spectra in mixtures of 21 and 87 metabolites. Multi-layered perceptron-based metabolite quantification was slightly more accurate when directly processing the low-field spectra compared to high-field converted spectra, which, at least for the current study, precludes the need for low-to-high-field spectral conversion; however, this comparison of low and high-field quantification necessitates further research, comparison, and experimental validation. Conclusions: The transformer method of NMR data processing was effective in converting low-field simulated spectra to high-field for metabolomic applications and could be further explored to automate processing in other areas of NMR spectroscopy. 
    more » « less
  4. null (Ed.)
    Nuclear Magnetic Resonance (NMR) spectroscopy is a quantitative analytical tool commonly utilized for metabolomics analysis. Quantitative NMR (qNMR) is a field of NMR spectroscopy dedicated to the measurement of analytes through signal intensity and its linear relationship with analyte concentration. Metabolomics-based NMR exploits this quantitative relationship to identify and measure biomarkers within complex biological samples such as serum, plasma, and urine. In this review of quantitative NMR-based metabolomics, the advancements and limitations of current techniques for metabolite quantification will be evaluated as well as the applications of qNMR in biomedical metabolomics. While qNMR is limited by sensitivity and dynamic range, the simple method development, minimal sample derivatization, and the simultaneous qualitative and quantitative information provide a unique landscape for biomedical metabolomics, which is not available to other techniques. Furthermore, the non-destructive nature of NMR-based metabolomics allows for multidimensional analysis of biomarkers that facilitates unambiguous assignment and quantification of metabolites in complex biofluids. 
    more » « less
  5. Summary The process of identifying and quantifying metabolites in complex mixtures plays a critical role in metabolomics studies to obtain an informative interpretation of underlying biological processes. Manual approaches are time-consuming and heavily reliant on the knowledge and assessment of nuclear magnetic resonance (NMR) experts. We propose a shifting-corrected regularized regression method, which identifies and quantifies metabolites in a mixture automatically. A detailed algorithm is also proposed to implement the proposed method. Using a novel weight function, the proposed method is able to detect and correct peak shifting errors caused by fluctuations in experimental procedures. Simulation studies show that the proposed method performs better with regard to the identification and quantification of metabolites in a complex mixture. We also demonstrate real data applications of our method using experimental and biological NMR mixtures. 
    more » « less