skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Oxidation of Hydrogen Sulfide to Polysulfide and Thiosulfate by a Carbon Nanozyme: Therapeutic Implications with an Emphasis on Down Syndrome
Abstract Hydrogen sulfide (H2S) is a noxious, potentially poisonous, but necessary gas produced from sulfur metabolism in humans. In Down Syndrome (DS), the production of H2S is elevated and associated with degraded mitochondrial function. Therefore, removing H2S from the body as a stable oxide could be an approach to reducing the deleterious effects of H2S in DS. In this report we describe the catalytic oxidation of hydrogen sulfide (H2S) to polysulfides (HS2+n) and thiosulfate (S2O32−) by poly(ethylene glycol) hydrophilic carbon clusters (PEG‐HCCs) and poly(ethylene glycol) oxidized activated charcoal (PEG‐OACs), examples of oxidized carbon nanozymes (OCNs). We show that OCNs oxidize H2S to polysulfides and S2O32−in a dose‐dependent manner. The reaction is dependent on O2and the presence of quinone groups on the OCNs. In DS donor lymphocytes we found that OCNs increased polysulfide production, proliferation, and afforded protection against additional toxic levels of H2S compared to untreated DS lymphocytes. Finally, in Dp16 and Ts65DN murine models of DS, we found that OCNs restored osteoclast differentiation. This new action suggests potential facile translation into the clinic for conditions involving excess H2S exemplified by DS.  more » « less
Award ID(s):
2012106
PAR ID:
10441930
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
36
Issue:
10
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Polymeric donors of gasotransmitters, gaseous signaling molecules such as hydrogen sulfide, nitric oxide, and carbon monoxide, hold potential for localized and extended delivery of these reactive gases. Examples of gasotransmitter donors based on polysaccharides are limited despite the availability and generally low toxicity of this broad class of polymers. In this work, we sought to create a polysaccharide H2S donor by covalently attachingN‐thiocarboxyanhydrides (NTAs) to amylopectin, the major component of starch. To accomplish this, we added an allyl group to an NTA, which can spontaneously hydrolyze to release carbonyl sulfide and ultimately H2S via the ubiquitous enzyme carbonic anhydrase, and then coupled it to thiol‐functionalized amylopectin of three different molecular weights (MWs) through thiol‐ene “click” photochemistry. We also varied the degree of substitution (DS) of the NTA along the amylopectin backbone. H2S release studies on the six samples, termed amyl‐NTAs, with variable MWs (three) and DS values (two), revealed that lower MW and higher DS led to faster release. Finally, dynamic light scattering experiments suggested that aggregation increased with MW, which may also have affected H2S release rates. Collectively, these studies present a new synthetic method to produce polysaccharide H2S donors for applications in the biomedical field. 
    more » « less
  2. Cellulose nanocrystal (CNC)-reinforced composites are gaining commercial attention on account of their high strength and sustainable sourcing. Grafting polymers to the CNCs in these composites has the potential to improve their properties, but current solution-based synthesis methods limit their production at scale. Utilizing dynamic hindered urea chemistry, a new method for the melt-functionalization of cellulose nanocrystals has been developed. This method does not require toxic solvents during the grafting step and can achieve grafting densities competitive with state-of-the-art solution-based grafting methods. Using cotton-sourced, TEMPO-oxidized CNCs, multiple molecular weights of poly(ethylene glycol) (PEG) as well as dodecane, polycaprolactone, and poly(butyl acrylate) were grafted to the CNC surface. With PEG-grafted nanoparticles, grafting densities of 0.47 chains nm−2 and 0.10 chains nm−2 were achieved with 2000 and 10,000 g mol−1 polymer chains respectively, both of which represent significant improvements over previous reports for solution-based PEG grafting onto CNCs. 
    more » « less
  3. Abstract Ethylene glycol is a widely utilized commodity chemical, the production of which accounts for over 46 million tons of CO2emission annually. Here we report a paired electrocatalytic approach for ethylene glycol production from methanol. Carbon catalysts are effective in reducing formaldehyde into ethylene glycol with a 92% Faradaic efficiency, whereas Pt catalysts at the anode enable formaldehyde production through methanol partial oxidation with a 75% Faradaic efficiency. With a membrane-electrode assembly configuration, we show the feasibility of ethylene glycol electrosynthesis from methanol in a single electrolyzer. The electrolyzer operates a full cell voltage of 3.2 V at a current density of 100 mA cm−2, with a 60% reduction in energy consumption. Further investigations, using operando flow electrolyzer mass spectroscopy, isotopic labeling, and density functional theory (DFT) calculations, indicate that the desorption of a *CH2OH intermediate is the crucial step in determining the selectively towards ethylene glycol over methanol. 
    more » « less
  4. Abstract 3D organoid models have recently seen a boom in popularity, as they can better recapitulate the complexity of multicellular organs compared to other in vitro culture systems. However, organoids are difficult to image because of the limited penetration depth of high‐resolution microscopes and depth‐dependent light attenuation, which can limit the understanding of signal transduction pathways and characterization of intimate cell‐extracellular matrix (ECM) interactions. To overcome these challenges, phototransfer by allyl sulfide exchange‐expansion microscopy (PhASE‐ExM) is developed, enabling optical clearance and super‐resolution imaging of organoids and their ECM in 3D. PhASE‐ExM uses hydrogels prepared via photoinitiated polymerization, which is advantageous as it decouples monomer diffusion into thick organoid cultures from the hydrogel fabrication. Apart from compatibility with organoids cultured in Matrigel, PhASE‐ExM enables 3.25× expansion and super‐resolution imaging of organoids cultured in synthetic poly(ethylene glycol) (PEG) hydrogels crosslinked via allyl‐sulfide groups (PEG‐AlS) through simultaneous photopolymerization and radical‐mediated chain‐transfer reactions that complete in <70 s. Further, PEG‐AlS hydrogels can be in situ softened to promote organoid crypt formation, providing a super‐resolution imaging platform both for pre‐ and post‐differentiated organoids. Overall, PhASE‐ExM is a useful tool to decipher organoid behavior by enabling sub‐micrometer scale, 3D visualization of proteins and signal transduction pathways. 
    more » « less
  5. Neonatal hypoxic-ischemic encephalopathy is the leading cause of permanent brain injury in term newborns and currently has no cure. Catalase, an antioxidant enzyme, is a promising therapeutic due to its ability to scavenge toxic reactive oxygen species and improve tissue oxygen status. However, upon in vivo administration, catalase is subject to a short half-life, rapid proteolytic degradation, immunogenicity, and an inability to penetrate the brain. Polymeric nanoparticles can improve pharmacokinetic properties of therapeutic cargo, although encapsulation of large proteins has been challenging. In this paper, we investigated hydrophobic ion pairing as a technique for increasing the hydrophobicity of catalase and driving its subsequent loading into a poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticle. We found improved formation of catalase-hydrophobic ion complexes with dextran sulfate (DS) compared to sodium dodecyl sulfate (SDS) or taurocholic acid (TA). Molecular dynamics simulations in a model system demonstrated retention of native protein structure after complexation with DS, but not SDS or TA. Using DS-catalase complexes, we developed catalase-loaded PLGA-PEG nanoparticles and evaluated their efficacy in the Vannucci model of unilateral hypoxic-ischemic brain injury in postnatal day 10 rats. Catalase-loaded nanoparticles retained enzymatic activity for at least 24 h in serum-like conditions, distributed through injured brain tissue, and delivered a significant neuroprotective effect compared to saline and blank nanoparticle controls. These results encourage further investigation of catalase and PLGA-PEG nanoparticle-mediated drug delivery for the treatment of neonatal brain injury. View Full-Text 
    more » « less