skip to main content


Title: Harnessing the Metal–Insulator Transition of VO 2 in Neuromorphic Computing
Abstract

Future‐generation neuromorphic computing seeks to overcome the limitations of von Neumann architectures by colocating logic and memory functions, thereby emulating the function of neurons and synapses in the human brain. Despite remarkable demonstrations of high‐fidelity neuronal emulation, the predictive design of neuromorphic circuits starting from knowledge of material transformations remains challenging. VO2is an attractive candidate since it manifests a near‐room‐temperature, discontinuous, and hysteretic metal–insulator transition. The transition provides a nonlinear dynamical response to input signals, as needed to construct neuronal circuit elements. Strategies for tuning the transformation characteristics of VO2based on modification of material properties, interfacial structure, and field couplings, are discussed. Dynamical modulation of transformation characteristics through in situ processing is discussed as a means of imbuing synaptic function. Mechanistic understanding of site‐selective modification; external, epitaxial, and chemical strain; defect dynamics; and interfacial field coupling in modifying local atomistic structure, the implications therein for electronic structure, and ultimately, the tuning of transformation characteristics, is emphasized. Opportunities are highlighted for inverse design and for using design principles related to thermodynamics and kinetics of electronic transitions learned from VO2to inform the design of new Mott materials, as well as to go beyond energy‐efficient computation to manifest intelligence.

 
more » « less
NSF-PAR ID:
10442066
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
35
Issue:
37
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Phase change materials, which show different electrical characteristics across the phase transitions, have attracted considerable research attention for their potential electronic device applications. Materials with metal‐to‐insulator or charge density wave (CDW) transitions such as VO2and 1T‐TaS2have demonstrated voltage oscillations due to their robust bi‐state resistive switching behavior with some basic neuronal characteristics. BaTiS3is a small bandgap ternary chalcogenide that has recently reported the emergence of CDW order below 245 K. Here, the discovery of DC voltage / current‐induced reversible threshold switching in BaTiS3devices between a CDW phase and a room temperature semiconducting phase is reported. The resistive switching behavior is consistent with a Joule heating scheme and sustained voltage oscillations with a frequency of up to 1 kHz are demonstrated by leveraging the CDW phase transition and the associated negative differential resistance. Strategies of reducing channel sizes and improving thermal management may further improve the device's performance. The findings establish BaTiS3as a promising CDW material for future electronic device applications, especially for energy‐efficient neuromorphic computing.

     
    more » « less
  2. Abstract

    Distinct properties of multiple phases of vanadium oxide (VOx) render this material family attractive for advanced electronic devices, catalysis, and energy storage. In this work, phase boundaries of VOxare crossed and distinct electronic properties are obtained by electrochemically tuning the oxygen content of VOxthin films under a wide range of temperatures. Reversible phase transitions between two adjacent VOxphases, VO2and V2O5, are obtained. Cathodic biases trigger the phase transition from V2O5to VO2, accompanied by disappearance of the wide band gap. The transformed phase is stable upon removal of the bias while reversible upon reversal of the electrochemical bias. The kinetics of the phase transition is monitored by tracking the time‐dependent response of the X‐ray absorption peaks upon the application of a sinusoidal electrical bias. The electrochemically controllable phase transition between VO2and V2O5demonstrates the ability to induce major changes in the electronic properties of VOxby spanning multiple structural phases. This concept is transferable to other multiphase oxides for electronic, magnetic, or electrochemical applications.

     
    more » « less
  3. Abstract

    The characteristic metal–insulator phase transition (MIT) in vanadium dioxide results in nonlinear electrical transport behavior, allowing VO2devices to imitate the complex functions of neurological behavior. Chemical doping is an established method for varying the properties of the MIT, and interstitial dopant boron has been shown to generate a unique dynamic relaxation effect in individual B‐VO2particles. This paper describes the first demonstration of an electrically stimulated B‐VO2proto‐device which manifests a time‐dependent critical transformation temperature and switching voltage derived from the coupling of dopant diffusion dynamics and the metal–insulator transition of VO2. During quasi‐steady current‐driven transitions, the electrical responses of B‐VO2proto‐devices show a step‐by‐step progression through the phase transformation, evidencing domain transformations within individual particles. The dynamic relaxation effect is shown to increase the critical switching voltage by up to 41% (ΔVcrit =0.13 V) and also to increase the resistivity of the M1 phase of B‐VO2by 14%, imbuing a memristive response derived from intrinsic material properties. These observations demonstrate the dynamic relaxation effect in B‐VO2proto‐devices whose electrical transport responses can be adjusted by electronic phase transitions triggered by temperature but also by time as a result of intrinsic dynamics of interstitial dopants.

     
    more » « less
  4. Understanding the pathways and time scales underlying electrically driven insulator-metal transitions is crucial for uncovering the fundamental limits of device operation. Using stroboscopic electron diffraction, we perform synchronized time-resolved measurements of atomic motions and electronic transport in operating vanadium dioxide (VO2) switches. We discover an electrically triggered, isostructural state that forms transiently on microsecond time scales, which is shown by phase-field simulations to be stabilized by local heterogeneities and interfacial interactions between the equilibrium phases. This metastable phase is similar to that formed under photoexcitation within picoseconds, suggesting a universal transformation pathway. Our results establish electrical excitation as a route for uncovering nonequilibrium and metastable phases in correlated materials, opening avenues for engineering dynamical behavior in nanoelectronics.

     
    more » « less
  5. Abstract

    Translating the surging interest in neuromorphic electronic components, such as those based on nonlinearities near Mott transitions, into large‐scale commercial deployment faces steep challenges in the current lack of means to identify and design key material parameters. These issues are exemplified by the difficulties in connecting measurable material properties to device behavior via circuit element models. Here, the principle of local activity is used to build a model of VO2/SiN Mott threshold switches by sequentially accounting for constraints from a minimal set of quasistatic and dynamic electrical and high‐spatial‐resolution thermal data obtained via in situ thermoreflectance mapping. By combining independent data sets for devices with varying dimensions, the model is distilled to measurable material properties, and device scaling laws are established. The model can accurately predict electrical and thermal conductivities and capacitances and locally active dynamics (especially persistent spiking self‐oscillations). The systematic procedure by which this model is developed has been a missing link in predictively connecting neuromorphic device behavior with their underlying material properties, and should enable rapid screening of material candidates before employing expensive manufacturing processes and testing procedures.

     
    more » « less