Distinct properties of multiple phases of vanadium oxide (VO
- PAR ID:
- 10061726
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 28
- Issue:
- 34
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Epitaxial films of vanadium dioxide (VO 2 ) on rutile TiO 2 substrates provide a means of strain-engineering the transition pathways and stabilizing of the intermediate phases between monoclinic (insulating) M1 and rutile (metal) R end phases. In this work, we investigate structural behavior of epitaxial VO 2 thin films deposited on isostructural MgF 2 (001) and (110) substrates via temperature-dependent Raman microscopy analysis. The choice of MgF 2 substrate clearly reveals how elongation of V–V dimers accompanied by the shortening of V–O bonds triggers the intermediate M2 phase in the temperature range between 70–80 °C upon the heating–cooling cycles. Consistent with earlier claims of strain-induced electron correlation enhancement destabilizing the M2 phase our temperature-dependent Raman study supports a small temperature window for this phase. The similarity of the hysteretic behavior of structural and electronic transitions suggests that the structural transitions play key roles in the switching properties of epitaxial VO 2 thin films.more » « less
-
Abstract The characteristic metal–insulator phase transition (MIT) in vanadium dioxide results in nonlinear electrical transport behavior, allowing VO2devices to imitate the complex functions of neurological behavior. Chemical doping is an established method for varying the properties of the MIT, and interstitial dopant boron has been shown to generate a unique dynamic relaxation effect in individual B‐VO2particles. This paper describes the first demonstration of an electrically stimulated B‐VO2proto‐device which manifests a time‐dependent critical transformation temperature and switching voltage derived from the coupling of dopant diffusion dynamics and the metal–insulator transition of VO2. During quasi‐steady current‐driven transitions, the electrical responses of B‐VO2proto‐devices show a step‐by‐step progression through the phase transformation, evidencing domain transformations within individual particles. The dynamic relaxation effect is shown to increase the critical switching voltage by up to 41% (Δ
V crit= 0.13 V) and also to increase the resistivity of the M1 phase of B‐VO2by 14%, imbuing a memristive response derived from intrinsic material properties. These observations demonstrate the dynamic relaxation effect in B‐VO2proto‐devices whose electrical transport responses can be adjusted by electronic phase transitions triggered by temperature but also by time as a result of intrinsic dynamics of interstitial dopants. -
Abstract Controlling material properties at the nanoscale is a critical enabler of high performance electronic and photonic devices. A prototypical material example is VO2, where a structural phase transition in correlation with dramatic changes in resistivity, optical response, and thermal properties demonstrates particular technological importance. While the phase transition in VO2can be controlled at macroscopic scales, reliable and reversible nanoscale control of the material phases has remained elusive. Here, reconfigurable nanoscale manipulations of VO2from the pristine monoclinic semiconducting phase to either a stable monoclinic metallic phase, a metastable rutile metallic phase, or a layered insulating phase using an atomic force microscope is demonstrated at room temperature. The capability to directly write and erase arbitrary 2D patterns of different material phases with distinct optical and electrical properties builds a solid foundation for future reprogrammable multifunctional device engineering.
-
Abstract The M1 form of vanadium dioxide, which exhibits a reversible insulator–metal transition above room temperature, has been incorporated into nanoscale heterostructures through solution‐phase epitaxial growth on the tips of rutile TiO2nanorods. Four distinct classes of VO2‐TiO2‐VO2nanorod heterostructures are accessible by modulating the growth conditions. Each type of VO2‐TiO2‐VO2nanostructure has a different insulator–metal transition temperature that depends on the VO2domain sizes and the TiO2‐VO2interfacial strain characteristics.
-
Abstract The M1 form of vanadium dioxide, which exhibits a reversible insulator–metal transition above room temperature, has been incorporated into nanoscale heterostructures through solution‐phase epitaxial growth on the tips of rutile TiO2nanorods. Four distinct classes of VO2‐TiO2‐VO2nanorod heterostructures are accessible by modulating the growth conditions. Each type of VO2‐TiO2‐VO2nanostructure has a different insulator–metal transition temperature that depends on the VO2domain sizes and the TiO2‐VO2interfacial strain characteristics.