skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Role of Transition Metals on Chemo‐Mechanical Instabilities in Prussian Blue Analogues For K‐Ion Batteries: The Case Study on KNHCF Versus KMHCF
Abstract Prussian blue analogues (PBAs) cathodes can host diverse monovalent and multivalent metal ions due to their tunable structure. However, their electrochemical performance suffers from poor cycle life associated with chemo‐mechanical instabilities. This study investigates the driving forces behind chemo‐mechanical instabilities in Ni‐ and Mn‐based PBAs cathodes for K‐ion batteries by combining electrochemical analysis, digital image correlation, and spectroscopy techniques. Capacity retention in Ni‐based PBA is 96% whereas it is 91.5% for Mn‐based PBA after 100 cycles at C/5 rate. During charge, the potassium nickel hexacyanoferrate (KNHCF) electrode experiences a positive strain generation whereas the potassium manganese hexacyanoferrate (KMHCF) electrode undergoes initially positive strain generation followed by a reduction in strains at a higher state of charge. Overall, both cathodes undergo similar reversible electrochemical strains in each charge–discharge cycle. There is ~0.80% irreversible strain generation in both cathodes after 5 cycles. XPS studies indicated richer organic layer compounds in the cathode‐electrolyte interface (CEI) layer formed on KMHCF cathodes compared to the KNHCF ones. Faster capacity fades in Mn‐based PBA, compared to Ni‐based ones, is attributed to the formation of richer organic compounds in CEI layers, rather than mechanical deformations. Understanding the driving forces behind instabilities provides a guideline to develop material‐based strategies for better electrochemical performance.  more » « less
Award ID(s):
2016453
PAR ID:
10442122
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
13
Issue:
32
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Layer-structured Na intercalation compounds such as NaxMO2 (M=Co, Mn, Cr) have attracted much attention as cathode materials for sodium-ion batteries due to their high volumetric and gravimetric energy densities. Among them, NaCrO2 with layered rock salt structure is one of the promising cathodes since NaCrO2 has a desirable flat and smooth charge/discharge voltage plateau.1 In addition, NaCrO2 has the highest thermal stability at charged state which makes it a potentially safer cathode material.2 The NaCrO2 exhibits a reversible capacity of 110 mAh g-1 with good cycling performance.3 However, the transition metal oxide (TMO) cathode materials in NIBs undergo severe chemo-mechanical deformations which leads to capacity fade and poor cycling and is the limiting factor of NIBs. The electrochemical characterization and examination of the electrode structure were the primary focus of several investigations. To improve the lifespan and performance of electrode materials for Na-ion batteries, it is vital to comprehend how Na ions impact the chemo-mechanical stability of the electrodes. In this talk, we will discuss the driving forces behind the structural and interfacial deformations on NaCrO2 cathodes. Digital image correlation measurements were conducted to probe strain evolution in the electrode during cycling. The free-standing composite NaCrO2 electrode was used for stain measurements in custom-cell assembly. The battery was cycled against Na metal in 1 M NaClO4 in PC. The first part of the study involves structural and interfacial deformations in the lower voltage range of 2.3 V to 3.5 V where x<0.5 in NaxCrO2. And the second part focuses on the structural and interfacial deformations in the voltage range of 2.3 V to 4.7 V where x>0.5 in NaxCrO2. In the preliminary studies, we observed that the initial insertion of Na ions leads to negative strain evolution (contraction) in the electrode, followed by expansions in the electrode at a higher state of discharge. Similar phenomena are also observed during charge cycles, where extraction of Na results in an initial contraction in the electrode, followed by expansion at a higher state of charge. Understanding the mechanisms behind chemo-mechanical deformations will allow to tune structure & material property for better electrochemical performance. 
    more » « less
  2. Na-ion batteries have taken more interest in recent years as an alternative battery chemistry to Li-ion batteries because of material abundance, cost, and sufficient volumetric energy density for large-scale energy storage applications. However, Na-ion batteries suffer from rapid capacity fade associated with chemo-mechanical instabilities such as the formation of resistive solid-electrolyte / cathode-electrolyte interphase (SEI/CEI) layers, irreversible phase formations, and particle fracture. The cathode materials are fragile, especially metal oxides, therefore Na-ion cathodes are more prone to mechanical deformations upon larger volumetric expansions/reductions during Na-ion intercalation. Electrolyte additives have been utilized to improve the electrochemical performance of Li-ion and Na-ion batteries by modifying the chemistry of the SEI layers. In situ stress measurements on Si anode in Li-ion batteries demonstrated the generation of less mechanical deformations in the electrode when cycled in the presence of FEC additives.1However, there is not much known about the impact of electrolyte additives on the chemo-mechanical properties of CEI layers in Na-ion battery cathodes. Furthermore, the question still stands about how the electrolyte additives may impact the mechanical stability of the Na-ion cathodes. To address this gap, we systematically investigated the role of FEC additives on the electrochemical performance and associated chemo-mechanical instabilities in NaCrO2 cathodes. Experiments were performed in organic electrolytes with/without FEC additives. First, the talk will start with presenting the impact of FEC additives on the capacity retention and cyclic voltammeter profiles of NaCrO2 cathodes. Then, digital image correlation and multi-beam optical stress sensor techniques were employed to probe electrochemical strain and stress generation in the composite NaCrO2 cathodes during electrochemical cycling in organic electrolytes with/without FEC additives. Surface chemistry of the NaCrO2 cathodes after cycling was investigated with the FT-IR measurements. In summary, the talk will present contrast differences in the electrochemical and chemo-mechanical properties of NaCrO2 cathodes when cycled in the presence of the FEC additives. Acknowledgement: This work is supported by National Science Foundation (award number 2321405). Reference: 1) Tripathi et al 2023 J. Electrochem. Soc. 170 090544 
    more » « less
  3. Sodium chromium oxide, NaCrO2, exhibits promising features as a cathode electrode in Na-ion batteries, yet it encounters challenges with its capacity fading and poor cycle life. NaCrO2 undergoes multiple phase transitions during Na ion intercalation, eventually leading to chemical instabilities and mechanical deformations. Here, we employed the digital image correlation (DIC) technique to probe electrochemical strain generation in the cathode during cycling via cyclic voltammetry and galvanostatic cycling. The electrode undergoes significant irreversible mechanical deformations in the initial cycle, and irreversibility decreases in the subsequent cycles. During desodiation and sodiation, the electrode initially undergoes volume contraction at lower state-of-(dis)charge followed by expansions at a higher state-of-(dis)charge. The similar progression between strain and capacitive derivatives points out the phase-transition-induced deformations in the electrode. The evolution of cumulative irreversible strains with cycling time indicates the irreversibility rising from the formation of cathode-electrolyte interphase layers. The study demonstrates valuable insights into mechanical deformations in NaCrO2 electrodes during battery cycling, which is critical to engineer mechanically robust cathodes for Na-ion batteries. 
    more » « less
  4. Prussian blue analogs (PBAs) are an important material class for aqueous electrochemical separations and energy storage owing to their ability to reversibly intercalate monovalent cations. However, incorporating interstitial [Formula: see text] molecules in the ab initio study of PBAs is technically challenging, though essential to understanding the interactions between interstitial water, interstitial cations, and the framework lattice that affect intercalation potential and cation intercalation selectivity. Accordingly, we introduce and use a method that combines the efficiency of machine-learning models with the accuracy of ab initio calculations to elucidate mechanisms of (1) lattice expansion upon intercalation of cations of different sizes, (2) selectivity bias toward intercalating hydrophobic cations of large size, and (3) semiconductor–conductor transitions from anhydrous to hydrated lattices. We analyze the PBA nickel hexacyanoferrate [[Formula: see text]] due to its structural stability and electrochemical activity in aqueous electrolytes. Here, grand potential analysis is used to determine the equilibrium degree of hydration for a given intercalated cation (Na[Formula: see text], K[Formula: see text], or Cs[Formula: see text]) and [Formula: see text] oxidation state based on pressure-equilibrated structures determined with the aid of machine learning and simulated annealing. The results imply new directions for the rational design of future cation-intercalation electrode materials that optimize performance in various electrochemical applications, and they demonstrate the importance of choosing an appropriate calculation framework to predict the properties of PBA lattices accurately. 
    more » « less
  5. Abstract The development of next-generation batteries, utilizing electrodes with high capacities and power densities requires a comprehensive understanding and precise control of material interfaces and architectures. Electro-chemo-mechanics plays an integral role in the morphological evolution and stability of such complex interfaces. Volume changes in electrode materials and the chemical interactions of electrode/electrolyte interfaces result in nonuniform stress fields and structurally different interphases, fundamentally affecting the underlying transport and reaction kinetics. The origin of this mechanistic coupling and its implications on degradation is uniquely dependent on the interface characteristics. In this review, the distinct nature of chemo–mechanical coupling and failure mechanisms at solid–liquid interfaces and solid–solid interfaces is analyzed. For lithium metal electrodes, the critical role of surface/microstructural heterogeneities on the solid electrolyte interphase (SEI) stability and dendrite growth in liquid electrolytes, and on the onset of contact loss and filament penetration with solid electrolytes is summarized. With respect to composite electrodes, key differences in the microstructure-coupled electro-chemo-mechanical attributes of intercalation- and conversion-based chemistries are delineated. Moving from liquid to solid electrolytes in such cathodes, we highlight the significant impact of solid–solid point contacts on transport/mechanical response, electrochemical performance, and failure modes such as particle cracking and delamination. Finally, we present our perspective on future research directions and opportunities to address the underlying electro-chemo-mechanical challenges for enabling next-generation lithium metal batteries. 
    more » « less