skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Brown Dwarf Retrievals on FIRE!: Atmospheric Constraints and Lessons Learned from High Signal-to-noise Medium-resolution Spectroscopy of a T9 Dwarf
Abstract Brown dwarf spectra offer vital testbeds for our understanding of the chemical and physical processes that sculpt substellar atmospheres. Recently, atmospheric retrieval approaches have been successfully applied to low-resolution (R∼ 100) spectra of L, T, and Y dwarfs, yielding constraints on the chemical abundances and temperature structures of these atmospheres. Medium-resolution (R∼ 103) spectra of brown dwarfs offer additional insight, as molecular features are more easily disentangled and the thermal structure of the upper atmosphere is better probed. We present results from a GPU-based retrieval analysis of a high signal-to-noise, medium-resolution (R∼ 6000) FIRE spectrum from 0.85 to 2.5μm of the T9 dwarf UGPS J072227.51–054031.2. At 60× higher spectral resolution than previous brown dwarf retrievals, a number of novel challenges arise. We examine the effect of different opacity sources, in particular for CH4. Furthermore, we find that flaws in the data like errors from order stitching can bias our constraints. We compare these retrieval results to those for anR∼ 100 spectrum of the same object, revealing how constraints on atmospheric abundances and temperatures improve by an order of magnitude or more with increased spectral resolution. In particular, we can constrain the abundance of H2S, which is undetectable at lower spectral resolution. While these medium-resolution retrievals offer the potential of precise, stellar-like constraints on atmospheric abundances (∼0.02 dex), our retrieved radius is unphysically small ( R = 0.50 0.01 + 0.01 RJup), indicating shortcomings with our modeling framework. This work is an initial investigation into brown dwarf retrievals at medium spectral resolution, offering guidance for future ground-based studies and JWST observations.  more » « less
Award ID(s):
1909776
PAR ID:
10442210
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
953
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 170
Size(s):
Article No. 170
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A star's spin–orbit angle can give us insight into a system's formation and dynamical history. In this paper, we use MAROON-X observations of the Rossiter–McLaughlin effect to measure the projected obliquity of the LP 261-75 (also known as TOI-1779) system, focusing on the fully convective M dwarf LP 261-75A and the transiting brown dwarf LP 261-75C. This is the first obliquity constraint of a brown dwarf orbiting an M dwarf and the seventh obliquity constraint of a brown dwarf overall. We measure a projected obliquity of 5 10 + 11 degrees and a true obliquity of 1 4 7 + 8 degrees for the system, meaning that the system is well aligned and that the star is rotating very nearly edge-on, with an inclination of 90° ±  11°. The system thus follows along with the trends observed in transiting brown dwarfs around hotter stars, which typically have low obliquities. The tendency for brown dwarfs to be aligned may point to some enhanced obliquity damping in brown dwarf systems, but there is also a possibility that the LP 261-75 system was simply formed aligned. In addition, we note that the brown dwarf's radius (RC =  0.9RJ) is not consistent with the youth of the system or radius trends observed in other brown dwarfs, indicating that LP 261-75C may have an unusual formation history. 
    more » « less
  2. Abstract We present results from conducting a theoretical chemical analysis of a sample of benchmark companion brown dwarfs whose primary star is of type F, G, or K. We summarize the entire known sample of these types of companion systems, termed “compositional benchmarks,” that are present in the literature or recently published as key systems of study in order to best understand brown dwarf chemistry and condensate formation. Via mass balance and stoichiometric calculations, we predict a median brown dwarf atmospheric oxygen sink of 17.8 2.3 + 1.7 % by utilizing published stellar abundances in the local solar neighborhood. Additionally, we predict a silicate condensation sequence such that atmospheres with bulk Mg/Si ≲0.9 will form enstatite (MgSiO3) and quartz (SiO2) clouds, and atmospheres with bulk Mg/Si ≳0.9 will form enstatite and forsterite (Mg2SiO4) clouds. The implications of these results on C/O ratio trends in substellar-mass objects and the utility of these predictions in future modeling work are discussed. 
    more » « less
  3. Abstract We present results from an atmospheric retrieval analysis of Gl 229B using the Brewster retrieval code. We find the best fit model to be cloud-free, consistent with the T dwarf retrieval work of Line et al.; Zalesky et al. and Gonzales et al. Fundamental parameters (mass, radius, log(LBol/LSun), log(g)) determined from our model agree within 1σto SED-derived values, except forTeffwhere our retrievedTeffis approximately 100 K cooler than the evolutionary model-based SED value. We find a retrieved mass of 50 9 + 12 MJup, however, we also find that the observables of Gl 229B can be explained by a cloud-free model with a prior on mass at the dynamical value, 70MJup. We are able to constrain abundances for H2O, CO, CH4, NH3, Na and K and find a supersolar C/O ratio as compared to its primary, Gl 229A. We report an overall subsolar metallicity due to atmospheric oxygen depletion, but find a solar [C/H], which matches that of the primary. We find that this work contributes to a growing trend in retrieval-based studies, particularly for brown dwarfs, toward supersolar C/O ratios and discuss the implications of this result on formation mechanisms and internal physical processes, as well as model biases. 
    more » « less
  4. Abstract Using both ground-based transit photometry and high-precision radial velocity spectroscopy, we confirm the planetary nature of TOI-3785 b. This transiting Neptune orbits an M2-Dwarf star with a period of ∼4.67 days, a planetary radius of 5.14 ± 0.16R, a mass of 14.95 3.92 + 4.10 M, and a density of ρ = 0.61 0.17 + 0.18 g cm−3. TOI-3785 b belongs to a rare population of Neptunes (4R<Rp< 7R) orbiting cooler, smaller M-dwarf host stars, of which only ∼10 have been confirmed. By increasing the number of confirmed planets, TOI-3785 b offers an opportunity to compare similar planets across varying planetary and stellar parameter spaces. Moreover, with a high-transmission spectroscopy metric of ∼150 combined with a relatively cool equilibrium temperature ofTeq= 582 ± 16 K and an inactive host star, TOI-3785 b is one of the more promising low-density M-dwarf Neptune targets for atmospheric follow up. Future investigation into atmospheric mass-loss rates of TOI-3785 b may yield new insights into the atmospheric evolution of these low-mass gas planets around M dwarfs. 
    more » « less
  5. Abstract Brown dwarfs bridge the gap between stars and planets, providing valuable insight into both planetary and stellar-formation mechanisms. Yet the census of transiting brown-dwarf companions, in particular around M-dwarf stars, remains incomplete. We report the discovery of two transiting brown dwarfs around low-mass hosts using a combination of space- and ground-based photometry along with near-infrared radial velocities. We characterize TOI-5389Ab ( 68 . 0 2.2 + 2.2 M J ) and TOI-5610b ( 40 . 4 1.0 + 1.0 M J ), two moderately massive brown dwarfs orbiting early M-dwarf hosts (Teff = 3569 ± 59 K and 3618 ± 59 K, respectively). For TOI-5389Ab, the best fitting parameters are periodP = 10.40046 ± 0.00002 days, radius R BD = 0.82 4 0.031 + 0.033 RJ, and low eccentricity e = 0.096 2 0.0046 + 0.0027 . In particular, this constitutes one of the most extreme substellar-stellar companion-to-host mass ratios ofq= 0.150. For TOI-5610b, the best-fitting parameters are periodP = 7.95346 ± 0.00002 days, radius R BD = 0.88 7 0.031 + 0.031 RJ, and moderate eccentricity e = 0.35 4 0.012 + 0.011 . Both targets are expected to have shallow, but potentially observable, occultations: ≲500 ppm in the JohnsonKband. A statistical analysis of M-dwarf/BD systems reveals for the first time that those at short orbital periods (P < 13 days) exhibit a dearth of 13MJ < MBD < 40MJcompanions (q < 0.1) compared to those at slightly wider separations. 
    more » « less