Abstract Evolutionary convergence in distantly related species is among the most convincing evidence of adaptive evolution. The mammalian ear, responsible for balance and hearing, is not only characterised by its spectacular evolutionary incorporation of several bones of the jaw, it also varies considerably in shape across modern mammals. Using a multivariate approach, we show that in Afrotheria, a monophyletic clade with morphologically and ecologically highly disparate species, inner ear shape has evolved similar adaptations as in non-afrotherian mammals. We identify four eco-morphological trait combinations that underlie this convergence. The high evolvability of the mammalian ear is surprising: Nowhere else in the skeleton are different functional units so close together; it includes the smallest bones of the skeleton, encapsulated within the densest bone. We suggest that this evolvability is a direct consequence of the increased genetic and developmental complexity of the mammalian ear compared to other vertebrates. 
                        more » 
                        « less   
                    
                            
                            A switch in jaw form–function coupling during the evolution of mammals
                        
                    
    
            The evolutionary shift from a single-element ear, multi-element jaw to a multi-element ear, single-element jaw during the transition to crown mammals marks one of the most dramatic structural transformations in vertebrates. Research on this transformation has focused on mammalian middle-ear evolution, but a mandible comprising only the dentary is equally emblematic of this evolutionary radiation. Here, we show that the remarkably diverse jaw shapes of crown mammals are coupled with surprisingly stereotyped jaw stiffness. This strength-based morphofunctional regime has a genetic basis and allowed mammalian jaws to effectively resist deformation as they radiated into highly disparate forms with markedly distinct diets. The main functional consequences for the mandible of decoupling hearing and mastication were a trade-off between higher jaw stiffness versus decreased mechanical efficiency and speed compared with non-mammals. This fundamental and consequential shift in jaw form–function underpins the ecological and taxonomic diversification of crown mammals. This article is part of the theme issue ‘The mammalian skull: development, structure and function’. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2128146
- PAR ID:
- 10442314
- Date Published:
- Journal Name:
- Philosophical Transactions of the Royal Society B: Biological Sciences
- Volume:
- 378
- Issue:
- 1880
- ISSN:
- 0962-8436
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The evolutionary transition from early synapsids to therian mammals involved profound reorganization in locomotor anatomy and function, centered around a shift from “sprawled” to “erect” limb postures. When and how this functional shift was accomplished has remained difficult to decipher from the fossil record alone. Through biomechanical modeling of hindlimb force-generating performance in eight exemplar fossil synapsids, we demonstrate that the erect locomotor regime typifying modern therians did not evolve until just before crown Theria. Modeling also identifies a transient phase of increased performance in therapsids and early cynodonts, before crown mammals. Further, quantifying the global actions of major hip muscle groups indicates a protracted juxtaposition of functional redeployment and conservatism, highlighting the intricate interplay between anatomical reorganization and function across postural transitions. We infer a complex history of synapsid locomotor evolution and suggest that major evolutionary transitions between contrasting locomotor behaviors may follow highly nonlinear trajectories.more » « less
- 
            ‘Small-bodied faunivore’ is the dominant ancestral ecomorphotype early in crown mammalian radiations, but it is unknown how far back this trend extends within Synapsida (the mammalian total group). To examine synapsid macroevolutionary patterns in a phylogenetic context, we built a time-calibrated meta-phylogeny of 2,128 synapsid species from the Carboniferous through Eocene (305–34 Ma), based on 211 published character matrices, each weighted according to their dependence on ‘parent’ matrices. All published character matrices focusing on non-mammalian synapsids were included, making the meta-phylogeny comprehensive for non-mammaliaform synapsids. Further, we used the most comprehensive early mammaliaform matrices. We then collected jaw length measurements (as a proxy for body size) and dietary information for 408 synapsid species (37 non-therapsid pelycosaurs, 134 non-cynodont therapsids, 46 non-mammaliaform cynodonts, 80 non-therian mammaliaforms, and 178 therians). We used the meta-phylogeny in conjunction with jaw length measurements to investigate patterns of body-size and dietary evolution during radiations of synapsid subclades. The results show that faunivory is the typical ancestral diet of each major radiation within Synapsida, but the small-to-large trend in body-size within radiations does not become established until the end-Triassic size bottleneck near the base of Mammaliaformes. Instead, ‘pelycosaur’, ‘therapsid’, and ‘cynodont’ subclades have ancestral jaw lengths that are considerably larger than non-therian mammaliaforms and therians. The shift to small ancestral body sizes is one of several aspects of the mammalian phenotype to emerge in the Late Triassic. Furthermore, by placing ‘mammaliaforms’ and mammals near their likely lower size limit, this change forced most subsequent body-size diversification to consist of trends toward larger sizes, altering macroevolutionary dynamics for the remainder of synapsid history.more » « less
- 
            Modularity (segmentation), homology and heterochrony were essential concepts embraced by Gavin de Beer in his studies of the development and evolution of the vertebrate skull. While his pioneering contributions have stood the test of time, our understanding of the biological processes that underlie each concept has evolved. We assess de Beer's initial training as an experimental embryologist; his switch to comparative and descriptive studies of skulls, jaws and middle ear ossicles; and his later research on the mammalian skull, including his approach to head segmentation. The role of cells of neural crest and mesodermal origin in skull development, and developmental, palaeontological and molecular evidence for the origin of middle ear ossicles in the evolutionary transition from reptiles to mammals are used to illustrate our current understanding of modularity, homology and heterochrony. This article is part of the theme issue ‘The mammalian skull: development, structure and function’.more » « less
- 
            Abstract The evolution of complex dentitions in mammals was a major innovation that facilitated the expansion into new dietary niches, which imposed selection for tight form–function relationships. Teeth allow mammals to ingest and process food items by applying forces produced by a third-class lever system composed by the jaw adductors, the cranium, and the mandible. Physical laws determine changes in jaw adductor (biting) forces at different bite point locations along the mandible (outlever), thus, individual teeth are expected to experience different mechanical regimes during feeding. If the mammal dentition exhibits functional adaptations to mandible feeding biomechanics, then teeth are expected to have evolved to develop mechanically advantageous sizes, shapes, and positions. Here, we present bats as a model system to test this hypothesis and, more generally, for integrative studies of mammal dental diversity. We combine a field-collected dataset of bite forces along the tooth row with data on dental and mandible morphology across 30 bat species. We (1) describe, for the first time, bite force trends along the tooth row of bats; (2) use phylogenetic comparative methods to investigate relationships among bite force patterns, tooth, and mandible morphology; and (3) hypothesize how these biting mechanics patterns may relate to the developmental processes controlling tooth formation. We find that bite force variation along the tooth row is consistent with predictions from lever mechanics models, with most species having the greatest bite force at the first lower molar. The cross-sectional shape of the mandible body is strongly associated with the position of maximum bite force along the tooth row, likely reflecting mandibular adaptations to varying stress patterns among species. Further, dental dietary adaptations seem to be related to bite force variation along molariform teeth, with insectivorous species exhibiting greater bite force more anteriorly, narrower teeth and mandibles, and frugivores/omnivores showing greater bite force more posteriorly, wider teeth and mandibles. As these craniodental traits are linked through development, dietary specialization appears to have shaped intrinsic mechanisms controlling traits relevant to feeding performance.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    