skip to main content


This content will become publicly available on July 1, 2024

Title: The Music of Rivers: The Mathematics of Waves Reveals Global Structure and Drivers of Streamflow Regime
Key Points We compared tools for describing streamflow timeseries, including streamflow metrics, wavelet, and Fourier analysis Each method indicated streamflow data are structured: variability at short timescales is negatively correlated with long timescales Globally, dams were less correlated with streamflow regime than catchment size and climate were  more » « less
Award ID(s):
2011439 1916565
NSF-PAR ID:
10442375
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Water Resources Research
Volume:
59
Issue:
7
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Adige River Basin (ARB) provides a vital water supply source for varying demands including agriculture (wine production), energy (hydropower) and municipal water supply. Given the importance of this river system, information about past (paleo) drought and pluvial (wet) periods would quantity risk to water managers and planners. Annual streamflow data were obtained for four gauges that were spatially located within the upper ARB. The Old World Drought Atlas (OWDA) provides an annual June–July–August (JJA) self-calibrating Palmer Drought Severity Index (scPDSI) derived from 106 tree-ring chronologies for 5414 grid points across Europe from 0 to 2012 AD. In lieu of tree-ring chronologies, the OWDA dataset was used as a proxy to reconstruct both individual gauge and ARB regional streamflow from 0 to 2012. Principal component analysis (PCA) was applied to the four ARB streamflow gauges to generate one representative vector of regional streamflow. This regional streamflow vector was highly correlated with the four individual gauges, as coefficient of determination (R2) values ranged from 85% to 96%. Prescreening methods included correlating annual streamflow and scPDSI cells (within a 450 km radius) in which significant (p ≤ 0.01 or 99% significance) scPDSI cells were identified. The significant scPDSI cells were then evaluated for temporal stability to ensure practical and reliable reconstructions. Statistically significant and temporally stable scPDSI cells were used as predictors (independent variables) to reconstruct streamflow (predictand or dependent variable) for both individual gauges and at the regional scale. This resulted in highly skillful reconstructions of upper ARB streamflow from 0 to 2012 AD. Multiple drought and pluvial periods were identified in the paleo record that exceed those observed in the recent, historic record. Moreover, this study concurred with streamflow reconstructions in nearby European watersheds. 
    more » « less
  2. Abstract

    The temporal variability of precipitation and potential evapotranspiration affects streamflow from daily to long‐term scales, but the relative roles of different climate variabilities on streamflow at daily, monthly, annual, and mean annual scales have not been systematically investigated in the literature. This paper developed a new daily water balance model, which provides a unified framework for water balance across timescales. The daily water balance model is driven by four climate forcing scenarios (observed daily climate and observed daily climate with its intra‐monthly, intra‐annual, and inter‐annual variability removed) and applied to 78 catchments. Daily streamflow from the water balance model is aggregated to coarser timescales. The relative roles of intra‐monthly, intra‐annual, and inter‐annual climate variability are evaluated by comparing the modeled streamflow forced with the climate forcings at two consecutive timescales. It is found that daily, monthly, and annual streamflow is primarily controlled by the climate variability at the same timescale. Intra‐monthly climate variability plays a small role in monthly and annual streamflow variability. Intra‐annual climate variability has significant effects on streamflow at all the timescales, and the relative roles of inter‐annual climate variability are also significant to the monthly and mean annual streamflow, which is often disregarded. The quantitative evaluation of the roles of climate variability reveals how climate controls streamflow across timescales.

     
    more » « less
  3. This study reports the preliminary results from a statistical screening of tree-ring width records from the International Tree-Ring Data Bank (ITRDB), to evaluate the strength of the hydrological signal, in dendrochronological records from the Tennessee Valley. We used United States Geological Survey (USGS) streamflow data from 11 gages, within the Tennessee Valley, and regional tree-ring chronologies, to analyze the dendroclimatic potential of the region, and create seasonal flow reconstructions. Prescreening methods included correlation, date, and temporal stability analysis of predictors to ensure practical and reliable reconstructions. Seasonal correlation analysis revealed that large numbers of regional tree-ring chronologies were significantly correlated (p ≤ 0.05) with the May–June–July streamflow. Stepwise linear regression was used to create the May–June–July streamflow reconstructions. Ten of the 12 streamflow stations were considered statistically skillful (R2 ≥ 0.40). Skillful reconstructions ranged from 208 to 301 years in length, and were statistically validated using leave-one-out cross validation, the sign test, and a comparison of the distribution of low flow years. The long-term streamflow variability was analyzed for the Nolichucky, Nantahala, Emory, and South Fork (SF) Holston stations. The reconstructions revealed that while most of the Western United States (U.S.). was experiencing some of its highest flow years during the early 1900s, the Tennessee Valley region was experiencing a very low flow. Results revealed the potential benefit of using tree-ring chronologies to reconstruct hydrological variables in the Southeastern U.S., by demonstrating the ability of proxy-based reconstructions to provide useful data beyond the instrumental record. 
    more » « less
  4. null (Ed.)
    Seasonal reconstructions of streamflow are valuable because they provide water planners, policy makers, and stakeholders with information on the range and variability of water resources before the observational period. In this study, we used streamflow data from five gages near the Alabama-Florida border and centuries-long tree-ring chronologies to create and analyze seasonal flow reconstructions. Prescreening methods included correlation and temporal stability analysis of predictors to ensure practical and reliable reconstructions. Seasonal correlation analysis revealed that several regional tree-ring chronologies were significantly correlated (p ≤ 0.05) with March–October streamflow, and stepwise linear regression was used to create the reconstructions. Reconstructions spanned 1203–1985, 1652–1983, 1725–1993, 1867–2011, and 1238–1985 for the Choctawhatchee, Conecuh, Escambia, Perdido, and Pascagoula Rivers, respectively, all of which were statistically skillful (R2 ≥ 0.50). The reconstructions were statistically validated using the following parameters: R2 predicted validation, the sign test, the variance inflation factor (VIF), and the Durbin–Watson (D–W) statistic. The long-term streamflow variability was analyzed for the Choctawhatchee, Conecuh, Escambia, and Perdido Rivers, and the recent (2000s) drought was identified as being the most severe in the instrumental record. The 2000s drought was also identified as being one of the most severe droughts throughout the entire reconstructed paleo-record developed for all five rivers. This information is vital for the consideration of present and future conditions within the system. 
    more » « less
  5. Abstract

    For evaluating the climatic and landscape controls on long‐term baseflow, baseflow index (BFI, defined as the ratio of baseflow to streamflow) and baseflow coefficient (BFC, defined as the ratio of baseflow to precipitation) are formulated as functions of climate aridity index, storage capacity index (defined as the ratio of average soil water storage capacity to precipitation), and a shape parameter for the spatial variability of storage capacity. The derivation is based on the two‐stage partitioning framework and a cumulative distribution function for storage capacity. Storage capacity has a larger impact on BFI than on BFC. When storage capacity index is smaller than 1, BFI is less sensitive to storage capacity index in arid regions compared to that in humid regions; whereas, when storage capacity index is larger than 1, BFI is less sensitive to storage capacity index in humid regions. The impact of storage capacity index on BFC is only significant in humid regions. The shape parameter plays an important role on fast flow generation at the first‐stage partitioning in humid regions and baseflow generation at the second‐stage partitioning in arid regions. The derived formulae were applied to more than 400 catchments where storage capacity index was found to follow a logarithmic function with climate aridity index. The role of climate forcings at finer timescales on baseflow were quantified, indicating that seasonality in climate forcings has a significant control especially on BFI.

     
    more » « less