Downslope wind‐driven fires have resulted in many of the wildfire disasters in the western United States and represent a unique hazard to infrastructure and human life. We analyze the co‐occurrence of wildfires and downslope winds across the western United States (US) during 1992–2020. Downslope wind‐driven fires accounted for 13.4% of the wildfires and 11.9% of the burned area in the western US yet accounted for the majority of local burned area in portions of southern California, central Washington, and the front range of the Rockies. These fires were predominantly ignited by humans, occurred closer to population centers, and resulted in outsized impacts on human lives and infrastructure. Since 1999, downslope wind‐driven fires have accounted for 60.1% of structures and 52.4% of human lives lost in wildfires in the western US. Downslope wind‐driven fires occurred under anomalously dry fuels and exhibited a seasonality distinct from other fires—occurring primarily in the spring and fall. Over 1992–2020, we document a 25% increase in the annual number of downslope wind‐driven fires and a 140% increase in their respective annual burned area, which partially reflects trends toward drier fuels. These results advance our understanding of the importance of downslope winds in driving disastrous wildfires that threaten populated regions adjacent to mountain ranges in the western US. The unique characteristics of downslope wind‐driven fires require increased fire prevention and adaptation strategies to minimize losses and incorporation of changing human‐ignitions, fuel availability and dryness, and downslope wind occurrence to elucidate future fire risk.
- Award ID(s):
- 1655121
- PAR ID:
- 10442427
- Editor(s):
- Liu, Junguo
- Date Published:
- Journal Name:
- PNAS Nexus
- Volume:
- 2
- Issue:
- 3
- ISSN:
- 2752-6542
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Modern Pyromes: Biogeographical Patterns of Fire Characteristics across the Contiguous United StatesIn recent decades, wildfires in many areas of the United States (U.S.) have become larger and more frequent with increasing anthropogenic pressure, including interactions between climate, land-use change, and human ignitions. We aimed to characterize the spatiotemporal patterns of contemporary fire characteristics across the contiguous United States (CONUS). We derived fire variables based on frequency, fire radiative power (FRP), event size, burned area, and season length from satellite-derived fire products and a government records database on a 50 km grid (1984–2020). We used k-means clustering to create a hierarchical classification scheme of areas with relatively homogeneous fire characteristics, or modern ‘pyromes,’ and report on the model with eight major pyromes. Human ignition pressure provides a key explanation for the East-West patterns of fire characteristics. Human-dominated pyromes (85% mean anthropogenic ignitions), with moderate fire size, area burned, and intensity, covered 59% of CONUS, primarily in the East and East Central. Physically dominated pyromes (47% mean anthropogenic ignitions) characterized by relatively large (average 439 mean annual ha per 50 km pixel) and intense (average 75 mean annual megawatts/pixel) fires occurred in 14% of CONUS, primarily in the West and West Central. The percent of anthropogenic ignitions increased over time in all pyromes (0.5–1.7% annually). Higher fire frequency was related to smaller events and lower FRP, and these relationships were moderated by vegetation, climate, and ignition type. Notably, a spatial mismatch between our derived modern pyromes and both ecoregions and historical fire regimes suggests other major drivers for modern U.S. fire patterns than vegetation-based classification systems. This effort to delineate modern U.S. pyromes based on fire observations provides a national-scale framework of contemporary fire regions and may help elucidate patterns of change in an uncertain future.more » « less
-
The 2020 fire season punctuated a decades-long trend of increased fire activity across the western United States, nearly doubling the total area burned in the central Rocky Mountains since 1984. Understanding the causes and implications of such extreme fire seasons, particularly in subalpine forests that have historically burned infrequently, requires a long-term perspective not afforded by observational records. We place 21st century fire activity in subalpine forests in the context of climate and fire history spanning the past 2,000 y using a unique network of 20 paleofire records. Largely because of extensive burning in 2020, the 21st century fire rotation period is now 117 y, reflecting nearly double the average rate of burning over the past 2,000 y. More strikingly, contemporary rates of burning are now 22% higher than the maximum rate reconstructed over the past two millennia, during the early Medieval Climate Anomaly (MCA) (770 to 870 Common Era), when Northern Hemisphere temperatures were ∼0.3 °C above the 20th century average. The 2020 fire season thus exemplifies how extreme events are demarcating newly emerging fire regimes as climate warms. With 21st century temperatures now surpassing those during the MCA, fire activity in Rocky Mountain subalpine forests is exceeding the range of variability that shaped these ecosystems for millennia.
-
Streamflow often increases after fire, but the persistence of this effect and its importance to present and future regional water resources are unclear. This paper addresses these knowledge gaps for the western United States (WUS), where annual forest fire area increased by more than 1,100% during 1984 to 2020. Among 72 forested basins across the WUS that burned between 1984 and 2019, the multibasin mean streamflow was significantly elevated by 0.19 SDs ( P < 0.01) for an average of 6 water years postfire, compared to the range of results expected from climate alone. Significance is assessed by comparing prefire and postfire streamflow responses to climate and also to streamflow among 107 control basins that experienced little to no wildfire during the study period. The streamflow response scales with fire extent: among the 29 basins where >20% of forest area burned in a year, streamflow over the first 6 water years postfire increased by a multibasin average of 0.38 SDs, or 30%. Postfire streamflow increases were significant in all four seasons. Historical fire–climate relationships combined with climate model projections suggest that 2021 to 2050 will see repeated years when climate is more fire-conducive than in 2020, the year currently holding the modern record for WUS forest area burned. These findings center on relatively small, minimally managed basins, but our results suggest that burned areas will grow enough over the next 3 decades to enhance streamflow at regional scales. Wildfire is an emerging driver of runoff change that will increasingly alter climate impacts on water supplies and runoff-related risks.more » « less
-
Abstract. The annual area burned due to wildfires in the western United States (WUS) increased bymore than 300 % between 1984 and 2020. However, accounting for the nonlinear, spatially heterogeneous interactions between climate, vegetation, and human predictors driving the trends in fire frequency and sizes at different spatial scales remains a challenging problem for statistical fire models. Here we introduce a novel stochastic machine learning (SML) framework, SMLFire1.0, to model observed fire frequencies and sizes in 12 km × 12 km grid cells across the WUS. This framework is implemented using mixture density networks trained on a wide suite of input predictors. The modeled WUS fire frequency matches observations at both monthly (r=0.94) and annual (r=0.85) timescales, as do the monthly (r=0.90) and annual (r=0.88) area burned. Moreover, the modeled annual time series of both fire variables exhibit strong correlations (r≥0.6) with observations in 16 out of 18 ecoregions. Our ML model captures the interannual variability and the distinct multidecade increases in annual area burned for both forested and non-forested ecoregions. Evaluating predictor importance with Shapley additive explanations, we find that fire-month vapor pressure deficit (VPD) is the dominant driver of fire frequencies and sizes across the WUS, followed by 1000 h dead fuel moisture (FM1000), total monthly precipitation (Prec), mean daily maximum temperature (Tmax), and fraction of grassland cover in a grid cell. Our findings serve as a promising use case of ML techniques for wildfire prediction in particular and extreme event modeling more broadly. They also highlight the power of ML-driven parameterizations for potential implementation in fire modules of dynamic global vegetation models (DGVMs) and earth system models (ESMs).more » « less