People who are Deaf or Hard of Hearing (DHH) benefit from text captioning to understand audio, yet captions alone are often insufficient for the complex environment of a panel presentation, with rapid and unpredictable turn-taking among multiple speakers. It is challenging and tiring for DHH individuals to view captioned panel presentations, leading to feelings of misunderstanding and exclusion. In this work, we investigate the potential of Mixed Reality (MR) head-mounted displays for providing captioning with visual cues to indicate which person on the panel is speaking. For consistency in our experimental study, we simulate a panel presentation in virtual reality (VR) with various types of MR visual cues; in a study with 18 DHH participants, visual cues made it easier to identify speakers.
more »
« less
Exploring Cues and Signaling to Improve Cross-Reality Interruptions
In this paper, we report on initial work exploring the potential value of technology-mediated cues and signals to improve cross-reality interruptions. We investigated the use of color-coded visual cues (LED lights) to help a person decide when to interrupt a virtual reality (VR) user, and a gesture-based mechanism (waving at the user) to signal their desire to do so. To assess the potential value of these mechanisms we conducted a preliminary 2×3 within-subjects experimental design user study (N=10) where the participants acted in the role of the interrupter. While we found that our visual cues improved participants' experiences, our gesture-based signaling mechanism did not, as users did not trust it nor consider it as intuitive as a speech-based mechanism might be. Our preliminary findings motivate further investigation of interruption cues and signaling mechanisms to inform future VR head-worn display system designs.
more »
« less
- Award ID(s):
- 1800961
- PAR ID:
- 10442466
- Date Published:
- Journal Name:
- 2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)
- Page Range / eLocation ID:
- 827 to 832
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In a future of pervasive augmented reality (AR), AR systems will need to be able to efficiently draw or guide the attention of the user to visual points of interest in their physical-virtual environment. Since AR imagery is overlaid on top of the user's view of their physical environment, these attention guidance techniques must not only compete with other virtual imagery, but also with distracting or attention-grabbing features in the user's physical environment. Because of the wide range of physical-virtual environments that pervasive AR users will find themselves in, it is difficult to design visual cues that “pop out” to the user without performing a visual analysis of the user's environment, and changing the appearance of the cue to stand out from its surroundings. In this paper, we present an initial investigation into the potential uses of dichoptic visual cues for optical see-through AR displays, specifically cues that involve having a difference in hue, saturation, or value between the user's eyes. These types of cues have been shown to be preattentively processed by the user when presented on other stereoscopic displays, and may also be an effective method of drawing user attention on optical see-through AR displays. We present two user studies: one that evaluates the saliency of dichoptic visual cues on optical see-through displays, and one that evaluates their subjective qualities. Our results suggest that hue-based dichoptic cues or “Forbidden Colors” may be particularly effective for these purposes, achieving significantly lower error rates in a pop out task compared to value-based and saturation-based cues.more » « less
-
Redirected and amplified head movements have the potential to provide more natural interaction with virtual environments (VEs) than using controller-based input, which causes large discrepancies between visual and vestibular self-motion cues and leads to increased VR sickness. However, such amplified head movements may also exacerbate VR sickness symptoms over no amplification. Several general methods have been introduced to reduce VR sickness for controller-based input inside a VE, including a popular vignetting method that gradually reduces the field of view. In this paper, we investigate the use of vignetting to reduce VR sickness when using amplified head rotations instead of controllerbased input. We also investigate whether the induced VR sickness is a result of the user’s head acceleration or velocity by introducing two different modes of vignetting, one triggered by acceleration and the other by velocity. Our dependent measures were pre and post VR sickness questionnaires as well as estimated discomfort levels that were assessed each minute of the experiment. Our results show interesting effects between a baseline condition without vignetting, as well as the two vignetting methods, generally indicating that the vignetting methods did not succeed in reducing VR sickness for most of the participants and, instead, lead to a significant increase. We discuss the results and potential explanations of our findings.more » « less
-
Extended reality (XR) technologies, such as virtual reality (VR) and augmented reality (AR), provide users, their avatars, and embodied agents a shared platform to collaborate in a spatial context. Although traditional face-to-face communication is limited by users’ proximity, meaning that another human’s non-verbal embodied cues become more difficult to perceive the farther one is away from that person, researchers and practitioners have started to look into ways to accentuate or amplify such embodied cues and signals to counteract the effects of distance with XR technologies. In this article, we describe and evaluate the Big Head technique, in which a human’s head in VR/AR is scaled up relative to their distance from the observer as a mechanism for enhancing the visibility of non-verbal facial cues, such as facial expressions or eye gaze. To better understand and explore this technique, we present two complimentary human-subject experiments in this article. In our first experiment, we conducted a VR study with a head-mounted display to understand the impact of increased or decreased head scales on participants’ ability to perceive facial expressions as well as their sense of comfort and feeling of “uncannniness” over distances of up to 10 m. We explored two different scaling methods and compared perceptual thresholds and user preferences. Our second experiment was performed in an outdoor AR environment with an optical see-through head-mounted display. Participants were asked to estimate facial expressions and eye gaze, and identify a virtual human over large distances of 30, 60, and 90 m. In both experiments, our results show significant differences in minimum, maximum, and ideal head scales for different distances and tasks related to perceiving faces, facial expressions, and eye gaze, and we also found that participants were more comfortable with slightly bigger heads at larger distances. We discuss our findings with respect to the technologies used, and we discuss implications and guidelines for practical applications that aim to leverage XR-enhanced facial cues.more » « less
-
null (Ed.)Hand-gesture and in-air-handwriting provide ways for users to input information in Augmented Reality (AR) and Virtual Reality (VR) applications where a physical keyboard or a touch screen is unavailable. However, understanding the movement of hands and fingers is challenging, which requires a large amount of data and data-driven models. In this paper, we propose an open research infrastructure named FMKit for in-air-handwriting analysis, which contains a set of Python libraries and a data repository collected from over 180 users with two different types of motion capture sensors. We also present three research tasks enabled by FMKit, including in-air-handwriting based user authentication, user identification, and word recognition, and preliminary baseline performance.more » « less