skip to main content


Title: Effects of Environmental Noise Levels on Patient Handoff Communication in a Mixed Reality Simulation
When medical caregivers transfer patients to another person’s care (a patient handoff), it is essential they effectively communicate the patient’s condition to ensure the best possible health outcomes. Emergency situations caused by mass casualty events (e.g., natural disasters) introduce additional difficulties to handoff procedures such as environmental noise. We created a projected mixed reality simulation of a handoff scenario involving a medical evacuation by air and tested how low, medium, and high levels of helicopter noise affected participants’ handoff experience, handoff performance, and behaviors. Through a human-subjects experimental design study (N = 21), we found that the addition of noise increased participants’ subjective stress and task load, decreased their self-assessed and actual performance, and caused participants to speak louder. Participants also stood closer to the virtual human sending the handoff information when listening to the handoff than they stood to the receiver when relaying the handoff information. We discuss implications for the design of handoff training simulations and avenues for future handoff communication research.  more » « less
Award ID(s):
1800961
NSF-PAR ID:
10442469
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
28th ACM Symposium on Virtual Reality Software and Technology
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Using wireless signals to monitor human vital signs, especially heartbeat information, has been intensively studied in the past decade. This non-contact sensing modality can drive various applications from cardiac health, sleep, and emotion management. Under the circumstance of the COVID-19 pandemic, non-contact heart monitoring receives increasingly market demands. However, existing wireless heart monitoring schemes can only detect limited heart activities, such as heart rate, fiducial points, and Seismocardiography (SCG)-like information. In this paper, we present CardiacWave to enable a non-contact high-definition heart monitoring. CardiacWave can provide a full spectrum of Electrocardiogram (ECG)-like heart activities, including the details of P-wave, T-wave, and QRS complex. Specifically, CardiacWave is built upon the Cardiac-mmWave scattering effect (CaSE), which is a variable frequency response of the cardiac electromagnetic field under the mmWave interrogation. The CardiacWave design consists of a noise-resistant sensing scheme to interrogate CaSE and a cardiac activity profiling module for extracting cardiac electrical activities from the interrogation response. Our experiments show that the CardiacWave-induced ECG measures have a high positive correlation with the heart activity ground truth (i.e., measurements from a medical-grade instrument). The timing difference of P-waves, T-waves, and QRS complex is 0.67%, 0.71%, and 0.49%, respectively, and a mean cardiac event difference is within a delay of 5.3 milliseconds. These results indicate that CaridacWave offers high-fidelity and integral heart clinical characteristics. Furthermore, we evaluate the CardiacWave system with participants under various conditions, including heart and breath rates, ages, and heart habits (e.g., tobacco use). 
    more » « less
  2. The advancement of smart textiles has led to significant interest in developing wearable textile sensors (WTS) and offering new modalities to sense vital signs and activity monitoring in daily life settings. For this, textile fabrication methods such as knitting, weaving, embroidery, and braiding offer promising pathways toward unobtrusive and seamless sensing for WTS applications. Specifically, the knitted sensor has a unique intermeshing loop structure which is currently used to monitor repetitive body movements such as breathing (microscale motion) and walking (macroscale motion). However, the practical sensing application of knit structure demands a comprehensive study of knit structures as a sensor. In this work, we present a detailed performance evaluation of six knitted sensors and sensing variation caused by design, sensor size, stretching percentages % (10, 15, 20, 25), cyclic stretching (1000), and external factors such as sweat (salt-fog test). We also present regulated respiration (inhale–exhale) testing data from 15 healthy human participants; the testing protocol includes three respiration rates; slow (10 breaths/min), normal (15 breaths/min), and fast (30 breaths/min). The test carried out with statistical analysis includes the breathing time and breathing rate variability. These testing results offer an empirically derived guideline for future WTS research, present aggregated information to understand the sensor behavior when it experiences a different range of motion, and highlight the constraints of the silver-based conductive yarn when exposed to the real environment. 
    more » « less
  3. Objective This study investigates how team cognition occurs in care transitions from operating room (OR) to intensive care unit (ICU). We then seek to understand how the sociotechnical system and team cognition are related. Background Effective handoffs are critical to ensuring patient safety and have been the subject of many improvement efforts. However, the types of team-level cognitive processing during handoffs have not been explored, nor is it clear how the sociotechnical system shapes team cognition. Method We conducted this study in an academic, Level 1 trauma center in the Midwestern United States. Twenty-eight physicians (surgery, anesthesia, pediatric critical care) and nurses (OR, ICU) participated in semi-structured interviews. We performed qualitative content analysis and epistemic network analysis to understand the relationships between system factors, team cognition in handoffs and outcomes. Results Participants described three team cognition functions in handoffs—(1) information exchange, (2) assessment, and (3) planning and decision making; information exchange was mentioned most. Work system factors influenced team cognition. Inter-professional handoffs facilitated information exchange but included large teams with diverse backgrounds communicating, which can be inefficient. Intra-professional handoffs decreased team size and role diversity, which may simplify communication but increase information loss. Participants in inter-professional handoffs reflected on outcomes significantly more in relation to system factors and team cognition ( p < 0.001), while participants in intra-professional handoffs discussed handoffs as a task. Conclusion Handoffs include team cognition, which was influenced by work system design. Opportunities for handoff improvement include a flexibly standardized process and supportive tools/technologies. We recommend incorporating perspectives of the patient and family in future work. 
    more » « less
  4. Abstract Existing literature on information sharing in contests has established that sharing contest-specific information influences contestant behaviors, and thereby, the outcomes of a contest. However, in the context of engineering design contests, there is a gap in knowledge about how contest-specific information such as competitors’ historical performance influences designers’ actions and the resulting design outcomes. To address this gap, the objective of this study is to quantify the influence of information about competitors’ past performance on designers’ belief about the outcomes of a contest, which influences their design decisions, and the resulting design outcomes. We focus on a single-stage design competition where an objective figure of merit is available to the contestants for assessing the performance of their design. Our approach includes (i) developing a behavioral model of sequential decision making that accounts for information about competitors’ historical performance and (ii) using the model in conjunction with a human-subject experiment where participants make design decisions given controlled strong or weak performance records of past competitors. Our results indicate that participants spend greater efforts when they know that the contest history reflects that past competitors had a strong performance record than when it reflects a weak performance record. Moreover, we quantify cognitive underpinnings of such informational influence via our model parameters. Based on the parametric inferences about participants’ cognition, we suggest that contest designers are better off not providing historical performance records if past contest outcomes do not match their expectations setup for a given design contest. 
    more » « less
  5. Supporting smooth movement of mobile clients is important when offloading services on an edge computing platform. Interruption free client mobility demands seamless migration of the offloading service to nearby edge servers. However, fast migration of offloading services across edge servers in a WAN environment poses significant challenges to the handoff service design. In this paper, we present a novel service handoff system which seamlessly migrates offloading services to the nearest edge server, while the mobile client is moving. Service handoff is achieved via container migration. We identify an important performance problem during Docker container migration. Based on our systematic study of container layer management and image stacking, we propose a migration method which leverages the layered storage system to reduce file system synchronization overhead, without dependence on the distributed file system. We implement a prototype system and conduct experiments using real world product applications. Evaluation results reveal that compared to state-of-the-art service handoff systems designed for edge computing platforms, our system reduces the total duration of service handoff time by 80% (56%) with network bandwidth 5Mbps (20Mbps). 
    more » « less