ABSTRACT Earthquakes generate infrasound in multiple ways. Acoustic coupling at the surface from vertical seismic velocity, termed local infrasound, is often recorded by infrasound sensors but has seen relatively little study. Over 140 infrasound stations have recently been deployed in Alaska. Most of these stations have single sensors, rather than arrays, and were originally installed as part of the EarthScope Transportable Array. The single sensor nature, paucity of ground-truth signals, and remoteness makes evaluating their data quality and utility challenging. In addition, despite notable recent advances, infrasound calibration and frequency response evaluation remains challenging, particularly for large networks and retrospective analysis of sensors already installed. Here, we examine local seismoacoustic coupling on colocated seismic and infrasound stations in Alaska. Numerous large earthquakes across the region in recent years generated considerable vertical seismic velocity and local infrasound that were recorded on colocated sensors. We build on previous work and evaluate the full infrasound station frequency response using seismoacoustic coupled waves. By employing targeted signal processing techniques, we show that a single seismometer may be sufficient for characterizing the response of an entire nearby infrasound array. We find that good low frequency (<1 Hz) infrasound station response estimates can be derived from large (Mw>7) earthquakes out to at least 1500 km. High infrasound noise levels at some stations and seismic-wave energy focused at low frequencies limit our response estimates. The response of multiple stations in Alaska is found to differ considerably from their metadata and are related to improper installation and erroneous metadata. Our method provides a robust way to remotely examine infrasound station frequency response and examine seismoacoustic coupling, which is being increasingly used in airborne infrasound observations, earthquake magnitude estimation, and other applications. 
                        more » 
                        « less   
                    
                            
                            Sensor orientation of the TMD seismic network (Thailand) from P-wave particle motions
                        
                    
    
            Abstract The Thai Meteorological Department (TMD) seismic network began development in 2008. There are a total of 71 seismic stations consisting of 26 borehole stations and 45 surface stations currently installed. The three-component data from the TMD seismic network have been widely used in previous seismological studies. In a recent analysis, we have found that sensor orientation as reported in the site metadata is sometimes significantly incorrect, especially for borehole stations. In this study, we analyze P-wave polarization data from regional and teleseismic earthquakes recorded in the network to estimate the true instrument orientation relative to geographic north and compare that to station metadata. Of the 45 surface stations, we found that at present, ~ 82% are well oriented (i.e., aligned within 0–15° of true north). However, 8 sites have sensors misoriented by more than 15°, and some stations had a temporal change in sensor orientation during an upgrade to the seismic system with replacement of the sensor. We also evaluated sensor orientations for 26 TMD borehole seismic stations, from 2018 to the 2022. For many of the borehole stations, the actual sensor orientation differs significantly from the TMD metadata, especially at short-period stations. Many of those stations have sensor misorientations approaching 180°, due to errors in the ambient noise analysis calibration techniques used during installation. We have also investigated how this sensor misorientation affects previous seismic studies, such as regional moment tensor inversion of earthquakes sources and receiver function stacking. We have found that the large deviations in sensor orientation can result in erroneous results and/or large measurement errors. A cause of the orientation error for borehole sites could be a combination of strong background surface ambient seismic noise coupled with an incorrect reference instrument response. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1714892
- PAR ID:
- 10442489
- Date Published:
- Journal Name:
- Geoscience Letters
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2196-4092
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Abstract Cook Inlet fore‐arc basin in south‐central Alaska is a large, deep (7.6 km) sedimentary basin with the Anchorage metropolitan region on its margins. From 2015 to 2017, a set of 28 broadband seismic stations was deployed in the region as part of the Southern Alaska Lithosphere and Mantle Observation Network (SALMON) project. The SALMON stations, which also cover the remote western portion of Cook Inlet basin and the back‐arc region, form the basis for our observational study of the seismic response of Cook Inlet basin. We quantify the influence of Cook Inlet basin on the seismic wavefield using three data sets: (1) ambient‐noise amplitudes of 18 basin stations relative to a nonbasin reference station, (2) earthquake ground‐motion metrics for 34 crustal and intraslab earthquakes, and (3) spectral ratios (SRs) between basin stations and nonbasin stations for the same earthquakes. For all analyses, we examine how quantities vary with the frequency content of the seismic signal and with the basin depth at each station. Seismic waves from earthquakes and from ambient noise are amplified within Cook Inlet basin. At low frequencies (0.1–0.5 Hz), ambient‐noise ratios and earthquake SRs are in a general agreement with power amplification of 6–14 dB, corresponding to amplitude amplification factors of 2.0–5.0. At high frequencies (0.5–4.0 Hz), the basin amplifies the earthquake wavefield by similar factors. Our results indicate stronger amplification for the deeper basin stations such as near Nikiski on the Kenai Peninsula and weaker amplification near the margins of the basin. Future work devoted to 3D wavefield simulations and treatment of source and propagation effects should improve the characterization of the frequency‐dependent response of Cook Inlet basin to recorded and scenario earthquakes in the region.more » « less
- 
            SUMMARY The Ecuadorian convergent margin has experienced many large mega-thrust earthquakes in the past century, beginning with a 1906 event that propagated along as much as 500 km of the plate interface. Many subsections of the 1906 rupture area have subsequently produced Mw ≥ 7.7 events, culminating in the 16 April 2016, Mw 7.8 Pedernales earthquake. Interestingly, no large historic events Mw ≥ 7.7 appear to have propagated southward of ∼1°S, which coincides with the subduction of the Carnegie Ridge. We combine data from temporary seismic stations deployed following the Pedernales earthquake with data recorded by the permanent stations of the Ecuadorian national seismic network to discern the velocity structure of the Ecuadorian forearc and Cordillera using ambient noise tomography. Ambient noise tomography extracts Vsv information from the ambient noise wavefield and provides detailed constraints on velocity structures in the crust and upper mantle. In the upper 10 km of the Ecuadorian forearc, we see evidence of the deepest portions of the sedimentary basins in the region, the Progreso and Manabí basins. At depths below 30 km, we observe a sharp delineation between accreted fast forearc terranes and the thick crust of the Ecuadorian Andes. At depths ∼20 km, we see a strong fast velocity anomaly that coincides with the subducting Carnegie Ridge as well as the southern boundary of large mega-thrust earthquakes. Our observations raise the possibility that upper-plate structure, in addition to the subducting Carnegie Ridge, plays a role in the large event segmentation seen along the Ecuadorian margin.more » « less
- 
            ABSTRACT Earthquake ground motions in the vicinity of receivers couple with the atmosphere to generate pressure perturbations that are detectable by infrasound sensors. These so-called local infrasound signals traverse very short source-to-receiver paths, so that they often exhibit a remarkable correlation with seismic velocity waveforms at collocated seismic stations, and there exists a simple relationship between vertical seismic velocity and pressure time series. This study leverages the large regional network of infrasound sensors in Alaska to examine local infrasound from several light to great Alaska earthquakes. We estimate seismic velocity time series from infrasound pressure records and use these converted infrasound recordings to compute earthquake magnitudes. This technique has potential utility beyond the novelty of recording seismic velocities on pressure sensors. Because local infrasound amplitudes from ground motions are small, it is possible to recover seismic velocities at collocated sites where the broadband seismometers have clipped. Infrasound-derived earthquake magnitudes exhibit good agreement with seismically derived values. This proof-of-concept demonstration of computing seismic magnitudes from infrasound sensors illustrates that infrasound sensors may be utilized as proxy vertical-component seismometers, making a new data set available for existing seismic techniques. Because single-sensor infrasound stations are relatively inexpensive and are becoming ubiquitous, this technique could be used to augment existing regional seismic networks using a readily available sensor platform.more » « less
- 
            SUMMARY The Ecuadorian forearc is a complex region of accreted terranes with a history of large megathrust earthquakes. Most recently, a Mw 7.8 megathrust earthquake ruptured the plate boundary offshore of Pedernales, Ecuador on 16 April 2016. Following this event, an international collaboration arranged by the Instituto Geofisico at the Escuela Politécnica Nacional mobilized a rapid deployment of 65 seismic instruments along the Ecuadorian forearc. We combine this new seismic data set with 14 permanent stations from the Ecuadorian national network to better understand how variations in crustal structure relate to regional seismic hazards along the margin. Here, we present receiver function adaptive common conversion point stacks and a shear velocity model derived from the joint inversion of receiver functions and surface wave dispersion data obtained through ambient noise cross-correlations for the upper 50 km of the forearc. Beneath the forearc crust, we observe an eastward dipping slow velocity anomaly we interpret as subducting oceanic crust, which shallows near the projected centre of the subducting Carnegie Ridge. We also observe a strong shallow positive conversion in the Ecuadorian forearc near the Borbon Basin indicating a major discontinuity at a depth of ∼7 km. This conversion is not ubiquitous and may be the top of the accreted terranes. We also observe significant north–south changes in shear wave velocity. The velocity changes indicate variations in the accreted terranes and may indicate an increased amount of hydration beneath the Manabí Basin. This change in structure also correlates geographically with the southern rupture limit of multiple high magnitude megathrust earthquakes. The earthquake record along the Ecuadorian trench shows that no event with a Mw >7.4 has ruptured south of ∼0.5°S in southern Ecuador or northern Peru. Our observations, along with previous studies, suggest that variations in the forearc crustal structure and subducting oceanic crust may influance the occurrence and spatial distribution of high magnitude seismicity in the region.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    