skip to main content


This content will become publicly available on April 1, 2025

Title: The importance of climate and anthropogenic influence in precipitation partitioning in the contiguous United States
Understanding the process of precipitation partitioning into evapotranspiration and streamflow is fundamental for water resource planning. The Budyko framework has been widely used to evaluate the factors influencing this process. Still, its application has primarily focused on studying watersheds with minimal human influence and on a relatively small number of factors. Furthermore, there are discrepancies in the literature regarding the effects of climatic factors and land use changes on this process. To address these gaps, this study aims to quantify the influence of climate and anthropogenic activities on streamflow generation in the contiguous United States. To accomplish this, we calibrated an analytical form of the Budyko curve from 1990 to 2020 for 383 watersheds. We developed regional models of , a free parameter introduced to account for controls of precipitation partitioning not captured in the original Budyko equation, within different climate zones. We computed 49 climatic and landscape factors that were related to using correlation analysis and stepwise multiple linear regression. The findings of this study show that human activities explained a low variance of the spatial heterogeneity of compared with the watershed slope and the synchronization between precipitation and potential evapotranspiration, nevertheless, urban development emerged as a factor in temperate climates, whereas irrigated agriculture emerged in cold climates. In arid climates, mean annual precipitation explains less than 20% of the spatial variability in mean annual streamflow; furthermore, this climate is the most responsive to changes in . These results provide valuable insights into how land use and climate interact to impact streamflow generation differently in the contiguous United States contingent on the regional climate, explaining discrepancies in the literature.  more » « less
Award ID(s):
1923880
NSF-PAR ID:
10495221
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Hydrology
Volume:
633
Issue:
C
ISSN:
0022-1694
Page Range / eLocation ID:
130984
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding the dominant drivers of hydrological change is essential for water resources management. Watersheds in the United States are experiencing different types of changes (e.g., wet gets wetter and dry gets drier); however, few studies have analyzed what drivers are responsible for these changes, and how the dominant drivers vary over time and as a function of the climate/water regime and land cover. This study uses a time‐varying Budyko framework to quantify the relative importance of precipitation, potential evapotranspiration, and other factors (e.g., climate seasonality, agricultural drainage, and urbanization) in 889 watersheds in the contiguous United States from 1950 to 2009. Results show that watersheds that are getting wetter are primarily due to increases in precipitation. However, watersheds in dry climates that are getting drier are primarily due to other factors, while watersheds in wet climates that are getting drier are primarily due to precipitation. The drivers causing statistically significant streamflow trends vary depending on dominant land‐use types. Temporally, the increasing effects of other factors are more pronounced after the 1980s in the Midwest. The dominant drivers of streamflow in the United States are time‐varying instead of constant. This is consistent with non‐stationary patterns of streamflow. The time‐varying drivers provide information on the processes that are increasingly important and require the most attention in water resources management.

     
    more » « less
  2. Abstract

    Predicting future streamflow change is essential for water resources management and understanding the impacts of projected climate and land use changes on water availability. The Budyko framework is a useful and computationally efficient tool to model streamflow at larger spatial scales. This study predicts future streamflow changes in 889 watersheds in the contiguous United States based on projected climate and land use changes from 2040 to 2069. The temporal variability of surface water balance controls, represented by the Budykoωparameter, was modeled using multiple linear regression, random forest (RF), and gradient boosting. Results show that RF is the optimal model and can explain >85% of the variance in most watersheds. Relative cumulative moisture surplus, forest coverage, crop land and urban land are the most important variables of the time‐varyingωin most watersheds. There are statistically significant increases in mean annual precipitation, potential evapotranspiration, andωin 2040–2069, as compared to 1950–2005. This leads to a statistically significant decrease in the runoff ratio (Q/P). Streamflow is projected to decrease in the central, southwestern, and southeastern United States and increase in the northeast. These projections of water availability which are based on future climate and land use change scenarios can inform water resources management and adaptation strategies.

     
    more » « less
  3. Abstract

    A three‐stage precipitation partitioning framework is proposed to study the climate controls on mean annual groundwater evapotranspiration (GWET) for 33 gauged watersheds in west‐central Florida. Daily GWET, total evapotranspiration (ET), groundwater recharge, base flow, and total runoff are simulated by the Integrated Hydrologic Model, which dynamically couples a surface water model (HSPF) and a groundwater flow model (MODFLOW). The roles of GWET on long‐term water balance are quantified by four ratios. The ratios of GWET to total available water, watershed wetting, ET, and recharge decrease exponentially with watershed aridity index (WAI), which is defined as the ratio of potential evapotranspiration to total available water. In the one‐stage precipitation partitioning framework, the contribution of GWET to the ratio between total ET and available water for ET (i.e., they‐axis of Budyko curve) decreases with WAI. In the two‐stage precipitation partitioning framework, the contribution of GWET to the ratio between total ET and watershed wetting (i.e., Horton index) decreases with WAI. The changes in GWET caused by intra‐monthly (IM) climate variability are the highest among the temporal scales of climate variability investigated to understand controls on GWET. The inter‐annual, intra‐annual, and IM climate variabilities lead to increase of GWET; but the sub‐daily climate variability results in decrease of GWET. For the third stage of partitioning, given the same ratio of potential GWET to available water for GWET, higher percentage of forest and wetland and lower percentage of impervious land contribute to higher ratio of GWET to available water for GWET.

     
    more » « less
  4. Abstract

    The long‐term water balance of catchments is given by precipitation partitioned into either runoff or evaporation. Understanding precipitation partitioning controls is a critical focus of hydrology and water resources management. A useful theoretical framework that serves their understanding is the Budyko Framework. Our purpose is to understand how Budyko's n parameter is related to different controls and what is its relevance to precipitation partitioning. We investigated the relative importance of the dryness index and the Budyko parameter for precipitation partitioning, then applied partial correlation analysis and multivariate regressions to find out which were the principal partitioning controls. We focused our research in the central Appalachian mountains located in the eastern United States, considered as water towers to metropolitan areas in the eastern and mid‐western US (e.g., Pittsburgh, Washington DC), and selected a set of catchments characterized by minimal human disturbance and with large proportions of temperate forests. We found that climate controls such as mean annual temperature and fraction of precipitation falling in the form of snow exert a higher influence on partitioning than landscape controls (e.g., forest cover, Normalized Difference Vegetation Index, and slope). Thus, the importance of vegetation as a primary driver of partitioning could not be confirmed based on regional or basin‐wide characteristics. On the other hand, the influence of topography, and elevation in particular, was highly ranked as important. Our study highlights that partitioning controls could differ between basins in the same climate region, especially in a complex, mountainous topography setting.

     
    more » « less
  5. Abstract

    Since the 1970s, land cover in central Argentina has shifted away from perennial crops and grasses toward annual crops, largely soy. In this study, we use observations and modeling to understand how this shift in land use has affected the sub‐surface, surface, and atmospheric fluxes of moisture and energy in a flat agricultural area. We analyze the flux tower data from a paired site at Marcos Juarez in central Argentina during the period of the RELAMPAGO field campaign (2018–2019). When compared to perennial alfalfa, the observations over soy show lower evapotranspiration (ET) and specific humidity, higher sensible heat, higher outgoing shortwave radiation, and soil temperature. Water table (WT) depth is shallower below the soy than the alfalfa sites. To better understand the long‐term temporal behavior from 1970s to present, the Budyko framework is used to show that the trends in ET cannot be explained by climate variables alone. We then use the Noah‐MP land surface model calibrated at both soy and alfalfa sites. Long‐term simulations of the calibrated model suggests that ∼95% of precipitation is evaporated in the alfalfa site with negligible recharge and runoff. Contrarily in the case of soy, ET is about 68% of precipitation, leaving nearly 28% for recharge and 4% for runoff. Observed increases in streamflow and decreases in WT depth over time are likely linked to shifts in land cover. Furthermore, the partitioning of net radiation shifts from latent heat to sensible heat resulting in a 250% increase in Bowen ratio (from 0.2 to 0.7).

     
    more » « less