skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How Effective is Model Predictive Control in Real‐Time Water Quality Regulation? State‐Space Modeling and Scalable Control
Abstract Real‐time water quality control (WQC) in water distribution networks (WDN), the problem of regulating disinfectant levels, is challenging due to lack of (i) a proper control‐oriented modeling considering complicated components (junctions, reservoirs, tanks, pipes, pumps, and valves) for water quality modeling in WDN and (ii) a corresponding scalable control algorithm that performs real‐time water quality regulation. In this paper, we solve the WQC problem by (a) proposing a novel state‐space representation of the WQC problem that provides an explicit relationship between inputs (chlorine dosage at booster stations) and states/outputs (chlorine concentrations in the entire network) and (b) designing a highly scalable model predictive control (MPC) algorithm that showcases fast response time and resilience against some sources of uncertainty.  more » « less
Award ID(s):
2015671 1728629 2015603 2151392 2152928
PAR ID:
10442579
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
57
Issue:
5
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Variable water quality within buildings is of increasing concern due to public health impacts (e.g., lead,Legionella pneumophila,Naegleria fowleri, disinfection byproducts). Advances in data acquisition and analytics provide the opportunity to monitor real‐time building‐wide water quality variability. Accordingly, the goal of this research was to create a water quality sensor platform including data acquisition, storage, and mining methods able to monitor, and ultimately improve, water quality within buildings. The platform was used to monitor water temperature, pH, conductivity, oxidation–reduction potential, dissolved oxygen, and chlorine using sensors only. Other building data infrastructure, specifically Wi‐Fi logins by occupants, were used to approximate activity rates and associated water use. An advanced machine‐learning technique, gradient boosting machines, predicted the chlorine residuals throughout the building plumbing network better than multivariate linear regression models. Finally, the implications of water quality monitoring on costs, scalability, reliability, human dimensions, regulatory compliance, and future green building designs are considered. 
    more » « less
  2. ABSTRACT Research has demonstrated that water quality degrades in commercial and institutional (C&I) building premise plumbing leading to increased risk to consumers. This study aimed to bridge the gap between real premise plumbing systems and theory by using a pilot scale pipe rig representative of C&I premise plumbing. The research examined changes in key water quality parameters, including chlorine, copper, trihalomethanes (THMs), and cellular ATP (cATP) across different flushing and stagnation conditions. Results indicated significant degradation during periods of stagnation found in real premise plumbing, with reductions in chlorine levels and increases in copper and THM concentrations. Conversely, flushing effectively renewed water quality, though the extent varied with system size and flow dynamics. Correlations were found between key water quality variables. The findings emphasize the need for strategic water management practices to mitigate risks associated with poor water quality in building plumbing systems. 
    more » « less
  3. Abstract A state‐space representation of water quality (WQ) dynamics describing disinfectant (e.g., chlorine) transport dynamics in drinking water distribution networks has been recently proposed. Such representation is a byproduct of space‐ and time‐discretization of the partial differential equations modeling transport dynamics. This results in a large state‐space dimension even for small networks with tens of nodes. Although such a state‐space model provides a model‐driven approach to predict WQ dynamics, incorporating it into model‐based control algorithms or state estimators for large networks is challenging and at times intractable. To that end, this paper investigates model order reduction (MOR) methods for WQ dynamics with the objective of performing post‐reduction feedback control. The presented investigation focuses on reducing state‐dimension by orders of magnitude, the stability of the MOR methods, and the application of these methods to model predictive control. 
    more » « less
  4. Abstract This study provides an experimental validation of a multiple‐input multiple‐output (MIMO) model predictive control (MPC) strategy, coupled with dynamic risk modeling, to address two critical aspects of proton exchange membrane water electrolysis (PEMWE) operation: (i) process safety, by mitigating temperature imbalances, and (ii) system performance, through precise hydrogen production control. A cyber‐physical platform was developed for real‐time monitoring, state‐space modeling and validation, risk metrics analysis, control implementation, and visualization. Open‐loop experiments revealed limitations in managing thermal gradients, underscoring the need for feedback operating strategies. The proposed closed‐loop MPC approach achieved precise tracking of hydrogen production while maintaining safety by ensuring temperature stability. Moreover, the dynamic risk metrics show how thermal risk evolves with temperature and offer guidance for decision‐making. These findings demonstrate the effectiveness of MIMO MPC in enhancing the operational safety and efficiency of PEMWE systems, providing a foundation for scalable and sustainable hydrogen production. 
    more » « less
  5. Anytime algorithms enable intelligent systems to trade computation time with solution quality. To exploit this crucial ability in real-time decision-making, the system must decide when to interrupt the anytime algorithm and act on the current solution. Existing meta-level control techniques, however, address this problem by relying on significant offline work that diminishes their practical utility and accuracy. We formally introduce an online performance prediction framework that enables meta-level control to adapt to each instance of a problem without any preprocessing. Using this framework, we then present a meta-level control technique and two stopping conditions. Finally, we show that our approach outperforms existing techniques that require substantial offline work. The result is efficient nonmyopic meta-level control that reduces the overhead and increases the benefits of using anytime algorithms in intelligent systems. 
    more » « less