Abstract Discovery of new materials with enhanced optical properties in the visible and UV‐C range can impact applications in lasers, nonlinear optics, and quantum optics. Here, the optical floating zone growth of a family of rare earth borates,RBa3(B3O6)3(R= Nd, Sm, Tb, Dy, and Er), with promising linear and nonlinear optical (NLO) properties is reported. Although previously identified to be centrosymmetric, the X‐ray analysis combined with optical second harmonic generation (SHG) assigns the noncentrosymmetricPspace group to these crystals. Characterization of linear optical properties reveals a direct bandgap of ≈5.61–5.72 eV and strong photoluminescence in both the visible and mid‐IR regions. Anisotropic linear and nonlinear optical characterization reveals both Type‐I and Type‐II SHG phase matchability, with the highest effective phase‐matched SHG coefficient of 1.2 pm V−1at 800‐nm fundamental wavelength (for DyBa3(B3O6)3), comparable to β‐BaB2O4(phase‐matchedd22≈ 1.9 pm V−1). Laser‐induced surface damage threshold for these environmentally stable crystals is 650–900 GW cm−2, which is four to five times higher than that of β‐BaB2O4, thus providing an opportunity to pump with significantly higher power to generate about six to seven times stronger SHG light. Since the SHG arises from disorder on the Ba‐site, significantly larger SHG coefficients may be realized by “poling” the crystals to align the Ba displacements. These properties motivate further development of this crystal family for laser and wide bandgap NLO applications. 
                        more » 
                        « less   
                    
                            
                            IrSi 3 As 3 : a first transition metal arsenide non-linear optical material
                        
                    
    
            Noncentrosymmetric (NCS) silicon phosphides have recently shown promise as nonlinear optical materials due to the balance of strong second harmonic generation (SHG) activity and large laser damage threshold (LDT) values. While arsenides of electropositive metals, such as Ba, Mg, Zn, and Cd were explored, no NLO properties for transition metal tetrel arsenides have yet been reported. IrSi 3 As 3 is a novel compound, isostructural to IrSi 3 P 3 , which allows a direct investigation on the impact of the heavier pnictogen on structural and optical properties. The direct bandgap is reduced from 1.8 eV for IrSi 3 P 3 to 1.55 eV for IrSi 3 As 3 . Unlike many NLO chalcogenides, IrSi 3 As 3 has a small bandgap without compromising the balance between SHG signal and high LDT values. IrSi 3 As 3 was found to outperform both its phosphide analogue IrSi 3 P 3 , as well as the state-of-the-art infrared SHG standard AgGaS 2 (AGS) in SHG activity and the LDT. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1955456
- PAR ID:
- 10442748
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- Volume:
- 11
- Issue:
- 22
- ISSN:
- 2050-7488
- Page Range / eLocation ID:
- 11767 to 11772
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Nonlinear optical (NLO) crystals with superior properties are significant for advancing laser technologies and applications. Introducing rare earth metals to borates is a promising and effective way to modify the electronic structure of a crystal to improve its optical properties in the visible and ultraviolet range. In this work, we computationally discover inversion symmetry breaking in EuBa3(B3O6)3, which was previously identified as centric, and demonstrate noncentrosymmetry via synthesizing single crystals for the first time by the floating zone method. We determine the correct space group to beP6¯. The material has a large direct bandgap of 5.56 eV and is transparent down to 250 nm. The complete anisotropic linear and nonlinear optical properties were also investigated with ad11of ∼0.52 pm/V for optical second harmonic generation. Further, it is Type I and Type II phase matchable. This work suggests that rare earth metal borates are an excellent crystal family for exploring future deep ultraviolet (DUV) NLO crystals. It also highlights how first principles computations combined with experiments can be used to identify noncentrosymmetric materials that have been wrongly assigned to be centrosymmetric.more » « less
- 
            Abstract Superior infrared nonlinear optical (NLO) crystals are in urgent demand in the development of lasers and optical technologies for communications and computing. The critical challenge is to find a crystal with large non‐resonant phase‐matchable NLO coefficients and high laser damage threshold (LDTs) simultaneously, which however scale inversely. This work reports such a material, MgSiP2,that exhibits a large second harmonic generation (SHG) coefficient ofd14≈d36= 89 ± 5 pm V−1at 1550 nm fundamental wavelength, surpassing the commercial NLO crystals AgGaS2, AgGaSe2, and ZnGeP2. First principles theory reveals the polarizability and geometric arrangement of the [SiP4] tetrahedral units as the origin of this large nonlinear response. Remarkably, it also exhibits a high LDT value of 684 GW cm−2, which is six times larger than ZnGeP2and three times larger than CdSiP2. It has a wide transparency window of 0.53–10.35 µm, allowing broadband tunability. Further, it is Type I and Type II phase‐matchable with large effective SHG coefficients ofdeff,I≈80.2 pm V−1anddeff,II≈73.4 pm V−1. The outstanding properties of MgSiP2make it a highly attractive candidate for optical frequency conversion in the infrared.more » « less
- 
            null (Ed.)Gallium oxide (Ga 2 O 3 ) and its most stable modification, monoclinic β-Ga 2 O 3 , is emerging as a primary material for power electronic devices, gas sensors and optical devices due to a high breakdown voltage, large bandgap, and optical transparency combined with electrical conductivity. Growth of β-Ga 2 O 3 is challenging and most methods require very high temperatures. Nanowires of β-Ga 2 O 3 have been investigated extensively as they might be advantageous for devices such as nanowire field effect transistors, and gas sensors benefiting from a large surface to volume ratio, among others. Here, we report a synthesis approach using a sulfide precursor (Ga 2 S 3 ), which requires relatively low substrate temperatures and short growth times to produce high-quality single crystalline β-Ga 2 O 3 nanowires in high yields. Even though Au- or Ag-rich nanoparticles are invariably observed at the nanowire tips, they merely serve as nucleation seeds while the nanowire growth proceeds via supply and local oxidation of gallium at the substrate interface. Absorption and cathodoluminescence spectroscopy on individual nanowires confirms a wide bandgap of 4.63 eV and strong luminescence with a maximum ∼2.7 eV. Determining the growth process, morphology, composition and optoelectronic properties on the single nanowire level is key to further application of the β-Ga 2 O 3 nanowires in electronic devices.more » « less
- 
            Mueller matrix spectroscopic ellipsometry is applied to determine anisotropic optical properties for a set of single-crystal rhombohedral structure α-(Al x Ga 1− x ) 2 O 3 thin films (0 [Formula: see text] x [Formula: see text] 1). Samples are grown by plasma-assisted molecular beam epitaxy on m-plane sapphire. A critical-point model is used to render a spectroscopic model dielectric function tensor and to determine direct electronic band-to-band transition parameters, including the direction dependent two lowest-photon energy band-to-band transitions associated with the anisotropic bandgap. We obtain the composition dependence of the direction dependent two lowest band-to-band transitions with separate bandgap bowing parameters associated with the perpendicular ([Formula: see text] = 1.31 eV) and parallel ([Formula: see text] = 1.61 eV) electric field polarization to the lattice c direction. Our density functional theory calculations indicate a transition from indirect to direct characteristics between α-Ga 2 O 3 and α-Al 2 O 3 , respectively, and we identify a switch in band order where the lowest band-to-band transition occurs with polarization perpendicular to c in α-Ga 2 O 3 whereas for α-Al 2 O 3 the lowest transition occurs with polarization parallel to c. We estimate that the change in band order occurs at approximately 40% Al content. Additionally, the characteristic of the lowest energy critical point transition for polarization parallel to c changes from M 1 type in α-Ga 2 O 3 to M 0 type van Hove singularity in α-Al 2 O 3 .more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    