In-app privacy notices can help smartphone users make informed privacy decisions. However, they are rarely used in real-world apps, since developers often lack the knowledge, time, and resources to design and implement them well. We present Honeysuckle, a programming tool that helps Android developers build in-app privacy notices using an annotation-based code generation approach facilitated by an IDE plugin, a build system plugin, and a library. We conducted a within-subjects study with 12 Android developers to evaluate Honeysuckle. Each participant was asked to implement privacy notices for two popular open-source apps using the Honeysuckle library as a baseline as well as the annotation-based approach. Our results show that the annotation-based approach helps developers accomplish the task faster with significantly lower cognitive load. Developers preferred the annotation-based approach over the library approach because it was much easier to learn and use and allowed developers to achieve various types of privacy notices using a unified code format, which can enhance code readability and benefit team collaboration.
more »
« less
Human-to-Computer Interactivity Features Incorporated Into Behavioral Health mHealth Apps: Systematic Search
Background While there are thousands of behavioral health apps available to consumers, users often quickly discontinue their use, which limits their therapeutic value. By varying the types and number of ways that users can interact with behavioral health mobile health apps, developers may be able to support greater therapeutic engagement and increase app stickiness. Objective The main objective of this analysis was to systematically characterize the types of user interactions that are available in behavioral health apps and then examine if greater interactivity was associated with greater user satisfaction, as measured by app metrics. Methods Using a modified PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) methodology, we searched several different app clearinghouse websites and identified 76 behavioral health apps that included some type of interactivity. We then filtered the results to ensure we were examining behavioral health apps and further refined our search to include apps that identified one or more of the following terms: peer or therapist forum, discussion, feedback, professional, licensed, buddy, friend, artificial intelligence, chatbot, counselor, therapist, provider, mentor, bot, coach, message, comment, chat room, community, games, care team, connect, share, and support in the app descriptions. In the final group of 34 apps, we examined the presence of 6 types of human-machine interactivities: human-to-human with peers, human-to-human with providers, human-to–artificial intelligence, human-to-algorithms, human-to-data, and novel interactive smartphone modalities. We also downloaded information on app user ratings and visibility, as well as reviewed other key app features. Results We found that on average, the 34 apps reviewed included 2.53 (SD 1.05; range 1-5) features of interactivity. The most common types of interactivities were human-to-data (n=34, 100%), followed by human-to-algorithm (n=15, 44.2%). The least common type of interactivity was human–artificial intelligence (n=7, 20.5%). There were no significant associations between the total number of app interactivity features and user ratings or app visibility. We found that a full range of therapeutic interactivity features were not used in behavioral health apps. Conclusions Ideally, app developers would do well to include more interactivity features in behavioral health apps in order to fully use the capabilities of smartphone technologies and increase app stickiness. Theoretically, increased user engagement would occur by using multiple types of user interactivity, thereby maximizing the benefits that a person would receive when using a mobile health app.
more »
« less
- Award ID(s):
- 2224014
- PAR ID:
- 10442753
- Date Published:
- Journal Name:
- JMIR Formative Research
- Volume:
- 7
- ISSN:
- 2561-326X
- Page Range / eLocation ID:
- e44926
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Core features (functionalities) of an app can often be accessed and invoked in several ways, i.e., through alternative sequences of user-interface (UI) interactions. Given the manual effort of writing tests, developers often only consider the typical way of invoking features when creating the tests (i.e., the “sunny day scenario”). However, the alternative ways of invoking a feature are as likely to be faulty. These faults would go undetected without proper tests. To reduce the manual effort of creating UI tests and help developers more thoroughly examine the features of apps, we presentRoute, an automated tool for feature-based UI test augmentation for Android apps.Routefirst takes a UI test and the app under test as input. It then applies novel heuristics to find additional high-quality UI tests, consisting of both inputs and assertions, that verify the same feature as the original test in alternative ways. Application ofRouteon several dozen tests for popular apps on Google Play shows that for 96% of the existing tests,Routewas able to generate at least one alternative test. Moreover, the fault detection effectiveness of augmented test suites in our experiments showed substantial improvements of up to 39% over the original test suites.more » « less
-
Mobile applications (apps) provide users valuable benefits at the risk of exposing users to privacy harms. Improving privacy in mobile apps faces several challenges, in particular, that many apps are developed by low resourced software development teams, such as end-user programmers or in startups. In addition, privacy risks are primarily known to users, which can make it difficult for developers to prioritize privacy for sensitive data. In this paper, we introduce a novel, lightweight method that allows app developers to elicit scenarios and privacy risk scores from users directly using only an app screenshot. The technique relies on named entity recognition (NER) to identify information types in user-authored scenarios, which are then fed in real-time to a privacy risk survey that users complete. The best-performing NER model predicts information types with a weighted average precision of 0.70 and recall of 0.72, after post-processing to remove false positives. The model was trained on a labeled 300-scenario corpus, and evaluated in an end-to-end evaluation using an additional 203 scenarios yielding 2,338 user-provided privacy risk scores. Finally, we discuss how developers can use the risk scores to prioritize, select and apply privacy design strategies in the context of four user-authored scenarios.more » « less
-
null (Ed.)Abstract Smartphone location sharing is a particularly sensitive type of information disclosure that has implications for users’ digital privacy and security as well as their physical safety. To understand and predict location disclosure behavior, we developed an Android app that scraped metadata from users’ phones, asked them to grant the location-sharing permission to the app, and administered a survey. We compared the effectiveness of using self-report measures commonly used in the social sciences, behavioral data collected from users’ mobile phones, and a new type of measure that we developed, representing a hybrid of self-report and behavioral data to contextualize users’ attitudes toward their past location-sharing behaviors. This new type of measure is based on a reflective learning paradigm where individuals reflect on past behavior to inform future behavior. Based on data from 380 Android smartphone users, we found that the best predictors of whether participants granted the location-sharing permission to our app were: behavioral intention to share information with apps, the “FYI” communication style, and one of our new hybrid measures asking users whether they were comfortable sharing location with apps currently installed on their smartphones. Our novel, hybrid construct of self-reflection on past behavior significantly improves predictive power and shows the importance of combining social science and computational science approaches for improving the prediction of users’ privacy behaviors. Further, when assessing the construct validity of the Behavioral Intention construct drawn from previous location-sharing research, our data showed a clear distinction between two different types of Behavioral Intention: self-reported intention to use mobile apps versus the intention to share information with these apps. This finding suggests that users desire the ability to use mobile apps without being required to share sensitive information, such as their location. These results have important implications for cybersecurity research and system design to meet users’ location-sharing privacy needs.more » « less
-
null (Ed.)This work presents the first-ever detailed and large-scale measurement analysis of storage consumption behavior of applications (apps) on smart mobile devices. We start by carrying out a five-year longitudinal static analysis of millions of Android apps to study the increase in their sizes over time and identify various sources of app storage consumption. Our study reveals that mobile apps have evolved as large monolithic packages that are packed with features to monetize/engage users and optimized for performance at the cost of redundant storage consumption. We also carry out a mobile storage usage study with 140 Android participants. We built and deployed a lightweight context-aware storage tracing tool, called cosmos, on each participant's device. Leveraging the traces from our user study, we show that only a small fraction of apps/features are actively used and usage is correlated to user context. Our findings suggest a high degree of app feature bloat and unused functionality, which leads to inefficient use of storage. Furthermore, we found that apps are not constrained by storage quota limits, and developers freely abuse persistent storage by frequently caching data, creating debug logs, user analytics, and downloading advertisements as needed. Finally, drawing upon our findings, we discuss the need for efficient mobile storage management, and propose an elastic storage design to reclaim storage space when unused. We further identify research challenges and quantify expected storage savings from such a design. We believe our findings will be valuable to the storage research community as well as mobile app developers.more » « less
An official website of the United States government

