skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multimodal pathogen transmission as a limiting factor in host distribution
Abstract Theoretical models suggest that infectious diseases could play a substantial role in determining the spatial extent of host species, but few studies have collected the empirical data required to test this hypothesis. Pathogens that sterilize their hosts or spread through frequency‐dependent transmission could have especially strong effects on the limits of species' distributions because diseased hosts that are sterilized but not killed may continue to produce infectious stages and frequency‐dependent transmission mechanisms are effective even at very low population densities. We collected spatial pathogen prevalence data and population abundance data for alpine carnations infected by the sterilizing pathogenMicrobotryum dianthorum, a parasite that is spread through both frequency‐dependent (vector‐borne) and density‐dependent (aerial spore transmission) mechanisms. Our 13‐year study reveals rapid declines in population abundance without a compensatory decrease in pathogen prevalence. We apply a stochastic, spatial model of parasite spread that accommodates spatial habitat heterogeneity to investigate how the population dynamics depend on multimodal (frequency‐dependent and density‐dependent) transmission. We found that the observed rate of population decline could plausibly be explained by multimodal transmission, but is unlikely to be explained by either frequency‐dependent or density‐dependent mechanisms alone. Multimodal pathogen transmission rates high enough to explain the observed decline predicted that eventual local extinction of the host species is highly likely. Our results add to a growing body of literature showing how multimodal transmission can constrain species distributions in nature.  more » « less
Award ID(s):
2011109
PAR ID:
10442846
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
104
Issue:
3
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Transmission is the fundamental process whereby pathogens infect their hosts and spread through populations, and can be characterized using mathematical functions. The functional form of transmission for emerging pathogens can determine pathogen impacts on host populations and can inform the efficacy of disease management strategies. By directly measuring transmission between infected and susceptible adult eastern newts (Notophthalmus viridescens) in aquatic mesocosms, we identified the most plausible transmission function for the emerging amphibian fungal pathogen Batrachochytrium salamandrivorans (Bsal). Although we considered a range of possible transmission functions, we found that Bsal transmission was best explained by pure frequency dependence. We observed that >90% of susceptible newts became infected within 17 days post-exposure to an infected newt across a range of host densities and initial infection prevalence treatments. Under these conditions, we estimated R_0 = 4.9 for Bsal in an eastern newt population. Our results suggest that Bsal has the capability of driving eastern newt populations to extinction and that managing host density may not be an effective management strategy. Intervention strategies that prevent Bsal introduction or increase host resistance or tolerance to infection may be more effective. Our results add to the growing empirical evidence that transmission of wildlife pathogens can saturate and be functionally frequency-dependent. 
    more » « less
  2. An open question in epidemiology is why transmission is often overdispersed, meaning that most new infections are driven by few infected individuals. For example, around 10% of COVID-19 cases cause 80% of new COVID-19 cases. This overdispersion in parasite transmission is likely driven by intrinsic heterogeneity among hosts, i.e. variable SARS-CoV-2 viral loads. However, host heterogeneity could also indirectly increase transmission dispersion by driving parasite adaptation. Specifically, transmission variation among hosts could drive parasite specialization to highly infectious hosts. Adaptation to rare, highly infectious hosts could amplify transmission dispersion by simultaneously decreasing transmission from common, less infectious hosts. This study considers whether increased transmission dispersion can be, in part, an emergent property of parasite adaptation to heterogeneous host populations. We develop a mathematical model using a Price equation framework to address this question that follows the epidemiological and evolutionary dynamics of a general host–parasite system. The results predict that parasite adaptation to heterogeneous host populations drives high transmission dispersion early in epidemics. Furthermore, parasite adaptation can maintain increased transmission dispersion at endemic equilibria if virulence differs between hosts in a heterogeneous population. More broadly, this study provides a framework for predicting how parasite adaptation determines transmission dispersion for emerging and re-emerging infectious diseases. 
    more » « less
  3. Theory often predicts that host populations should evolve greater resistance when parasites become abundant. Furthermore, that evolutionary response could ameliorate declines in host populations during epidemics. Here, we argue for an update: when all host genotypes become sufficiently infected, higher parasite abundance can select for lower resistance because its cost exceeds its benefit. We illustrate such a “resistance is futile” outcome with mathematical and empirical approaches. First, we analyzed an eco-evolutionary model of parasites, hosts, and hosts’ resources. We determined eco-evolutionary outcomes for prevalence, host density, and resistance (mathematically, “transmission rate”) along ecological and trait gradients that alter parasite abundance. With high enough parasite abundance, hosts evolve lower resistance, amplifying infection prevalence and decreasing host density. In support of these results, a higher supply of nutrients drove larger epidemics of survival-reducing fungal parasites in a mesocosm experiment. In two-genotype treatments, zooplankton hosts evolved less resistance under high-nutrient conditions than under low-nutrient conditions. Less resistance, in turn, was associated with higher infection prevalence and lower host density. Finally, in an analysis of naturally occurring epidemics, we found a broad, bimodal distribution of epidemic sizes consistent with the resistance is futile prediction of the eco-evolutionary model. Together, the model and experiment, supplemented by the field pattern, support predictions that drivers of high parasite abundance can lead to the evolution of lower resistance. Hence, under certain conditions, the most fit strategy for individual hosts exacerbates prevalence and depresses host populations. 
    more » « less
  4. Abstract The introduction of nonnative species and reductions in native biodiversity have resulted in substantial changes in vector and host communities globally, but the consequences for pathogen transmission are poorly understood. In lowland Hawaii, bird communities are composed of primarily introduced species, with scattered populations of abundant native species. We examined the influence of avian host community composition, specifically the role of native and introduced species, as well as host diversity, on the prevalence of avian malaria (Plasmodium relictum) in the southern house mosquito (Culex quinquefasciatus). We also explored the reciprocal effect of malaria transmission on native host populations and demography. Avian malaria infection prevalence in mosquitoes increased with the density and relative abundance of native birds, as well as host community competence, but was uncorrelated with host diversity. Avian malaria transmission was estimated to reduce population growth rates of Hawai‘i ʻamakihi (Chlorodrepanis virens) by 7–14%, but mortality from malaria could not explain gaps in this species’ distribution at our sites. Our results suggest that, in Hawaii, native host species increase pathogen transmission to mosquitoes, but introduced species can also support malaria transmission alone. The increase in pathogen transmission with native bird abundance leads to additional disease mortality in native birds, further increasing disease impacts in an ecological feedback cycle. In addition, vector abundance was higher at sites without native birds and this overwhelmed the effects of host community composition on transmission such that infected mosquito abundance was highest at sites without native birds. Higher disease risk at these sites due to higher vector abundance could inhibit recolonization and recovery of native species to these areas. More broadly, this work shows how differences in host competence for a pathogen among native and introduced taxa can influence transmission and highlights the need to examine this question in other systems to determine the generality of this result. 
    more » « less
  5. Abstract Changing climate has driven shifts in species phenology, influencing a range of ecological interactions from plant–pollinator to consumer–resource. Phenological changes in host–parasite systems have implications for pathogen transmission dynamics. The seasonal timing, or phenology, of peak larval and nymphal tick abundance is an important driver of tick‐borne pathogen prevalence through its effect on cohort‐to‐cohort transmission. Tick phenology is tightly linked to climatic factors such as temperature and humidity. Thus, variation in climate within and across regions could lead to differences in phenological patterns. These differences may explain regional variation in tick‐borne pathogen prevalence of the Lyme disease‐causingBorreliabacteria in vector populations in the United States. For example, one factor thought to contribute to high Lyme disease prevalence in ticks in the eastern United States is the asynchronous phenology of ticks there, where potentially infected nymphal ticks emerge earlier in the season than uninfected larval ticks. This allows the infected nymphal ticks to transmit the pathogen to hosts that are subsequently fed upon by the next generation of larval ticks. In contrast, in the western United States where Lyme disease prevalence is generally much lower, tick phenology is thought to be more synchronous with uninfected larvae emerging slightly before, or at the same time as, potentially infected nymphs, reducing horizontal transmission potential. Sampling larval and nymphal ticks, and their host‐feeding phenology, both across large spatial gradients and through time, is challenging, which hampers attempts to conduct detailed studies of phenology to link it with pathogen prevalence. In this study, we demonstrate through intensive within‐season sampling that the relative abundance and seasonality of larval and nymphal ticks are highly variable along a latitudinal gradient and likely reflect the variable climate in the far western United States with potential consequences for pathogen transmission. We find that feeding patterns were variable and synchronous feeding of juvenile ticks on key blood meal hosts was associated with mean temperature. By characterizing within‐season phenological patterns of the Lyme disease vector throughout a climatically heterogeneous region, we can begin to identify areas with high potential for tick‐borne disease risk and underlying mechanisms at a finer scale. 
    more » « less