Hosts can avoid parasites (and pathogens) by reducing social contact, but such isolation may carry costs, e.g. increased vulnerability to predators. Thus, many predator–host–parasite systems confront hosts with a trade-off between predation and parasitism. Parasites, meanwhile, evolve higher virulence in response to increased host sociality and consequently, increased multiple infections. How does predation shift coevolution of host behaviour and parasite virulence? What if predators are selective, i.e. predators disproportionately capture the sickest hosts? We answer these questions with an eco-coevolutionary model parametrized for a Trinidadian guppy–Gyrodactylusspp. system. Here, increased predation drives host coevolution of higher grouping, which selects for higher virulence. Additionally, higher predator selectivity drives the contact rate higher and virulence lower. Finally, we show how predation and selectivity can have very different impacts on host density and prevalence depending on whether hosts or parasites evolve, or both. For example, higher predator selectivity led to lower prevalence with no evolution or only parasite evolution but higher prevalence with host evolution or coevolution. These findings inform our understanding of diverse systems in which host behavioural responses to predation may lead to increased prevalence and virulence of parasites.
more »
« less
“Resistance Is Futile”: Weaker Selection for Resistance by Abundant Parasites Increases Prevalence and Depresses Host Density
Theory often predicts that host populations should evolve greater resistance when parasites become abundant. Furthermore, that evolutionary response could ameliorate declines in host populations during epidemics. Here, we argue for an update: when all host genotypes become sufficiently infected, higher parasite abundance can select for lower resistance because its cost exceeds its benefit. We illustrate such a “resistance is futile” outcome with mathematical and empirical approaches. First, we analyzed an eco-evolutionary model of parasites, hosts, and hosts’ resources. We determined eco-evolutionary outcomes for prevalence, host density, and resistance (mathematically, “transmission rate”) along ecological and trait gradients that alter parasite abundance. With high enough parasite abundance, hosts evolve lower resistance, amplifying infection prevalence and decreasing host density. In support of these results, a higher supply of nutrients drove larger epidemics of survival-reducing fungal parasites in a mesocosm experiment. In two-genotype treatments, zooplankton hosts evolved less resistance under high-nutrient conditions than under low-nutrient conditions. Less resistance, in turn, was associated with higher infection prevalence and lower host density. Finally, in an analysis of naturally occurring epidemics, we found a broad, bimodal distribution of epidemic sizes consistent with the resistance is futile prediction of the eco-evolutionary model. Together, the model and experiment, supplemented by the field pattern, support predictions that drivers of high parasite abundance can lead to the evolution of lower resistance. Hence, under certain conditions, the most fit strategy for individual hosts exacerbates prevalence and depresses host populations.
more »
« less
- Award ID(s):
- 2010826
- PAR ID:
- 10482605
- Publisher / Repository:
- The University of Chicago Press
- Date Published:
- Journal Name:
- The American Naturalist
- Volume:
- 201
- Issue:
- 6
- ISSN:
- 0003-0147
- Page Range / eLocation ID:
- 864 to 879
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Predation can alter diverse ecological processes, including host–parasite interactions. Selective predation, whereby predators preferentially feed on certain prey types, can affect prey density and selective pressures. Studies on selective predation in infected populations have primarily focused on predators preferentially feeding on infected prey. However, there is substantial evidence that some predators preferentially consume uninfected individuals. Such different strategies of prey selectivity likely modulate host–parasite interactions, changing the fitness payoffs both for hosts and their parasites. Here we investigated the effects of different types of selective predation on infection dynamics and host evolution. We used a host–parasite system in the laboratory (Daphnia dentifera infected with the horizontally transmitted fungus,Metschnikowia bicuspidata) to artificially manipulate selective predation by removing infected, uninfected, or randomly selected prey over approximately 8–9 overlapping generations. We collected weekly data on population demographics and host infection and measured susceptibility from a subset of the remaining hosts in each population at the end of the experiment. After 6 weeks of selective predation pressure, we found no differences in host abundance or infection prevalence across predation treatments. Counterintuitively, populations with selective predation on infected individuals had a higher abundance of infected individuals than populations where either uninfected or randomly selected individuals were removed. Additionally, populations with selective predation for uninfected individuals had a higher proportion of individuals infected after a standardized exposure to the parasite than individuals from the two other predation treatments. These results suggest that selective predation can alter the abundance of infected hosts and host evolution.more » « less
-
Parasites often coinfect host populations, and, by interacting within hosts, might change the trajectory of multi-parasite epidemics. However, host-parasite interactions often change with host age, raising the possibility that within-host interactions between parasites might also change, influencing the spread of disease. We measured how heterospecific parasites interacted within zooplankton hosts and how host age changed these interactions. We then parameterized an epidemiological model to explore how age-effects altered the impact of coinfection on epidemic dynamics. In our model, we found that in populations where epidemiologically relevant parameters did not change with age, the presence of a second parasite altered epidemic dynamics. In contrast, when parameters varied with host age (based on our empirical measures), there was no longer a difference in epidemic dynamics between singly and coinfected populations, indicating that variable age structure within a population eliminates the impact of coinfection on epidemic dynamics. Moreover, infection prevalence of both parasites was lower in populations where epidemiologically relevant parameters changed with age. Given that hostpopulation age structure changes over time and space, these results indicate that age-effects are important for understanding epidemiological processes in coinfected systems and that studies focused on a single age group could yield inaccurate insights.more » « less
-
Abstract Virulence, the degree to which a pathogen harms its host, is an important but poorly understood aspect of host-pathogen interactions. Virulence is not static, instead depending on ecological context and potentially evolving rapidly. For instance, at the start of an epidemic, when susceptible hosts are plentiful, pathogens may evolve increased virulence if this maximizes their intrinsic growth rate. However, if host density declines during an epidemic, theory predicts evolution of reduced virulence. Although well-studied theoretically, there is still little empirical evidence for virulence evolution in epidemics, especially in natural settings with native host and pathogen species. Here, we used a combination of field observations and lab assays in theDaphnia-Pasteuriamodel system to look for evidence of virulence evolution in nature. We monitored a large, naturally occurring outbreak ofPasteuria ramosainDaphnia dentifera, where infection prevalence peaked at ~ 40% of the population infected and host density declined precipitously during the outbreak. In controlled infections in the lab, lifespan and reproduction of infected hosts was lower than that of unexposed control hosts and of hosts that were exposed but not infected. We did not detect any significant changes in host resistance or parasite infectivity, nor did we find evidence for shifts in parasite virulence (quantified by host lifespan and number of clutches produced by hosts). However, over the epidemic, the parasite evolved to produce significantly fewer spores in infected hosts. While this finding was unexpected, it might reflect previously quantified tradeoffs: parasites in high mortality (e.g., high predation) environments shift from vegetative growth to spore production sooner in infections, reducing spore yield. Future studies that track evolution of parasite spore yield in more populations, and that link those changes with genetic changes and with predation rates, will yield better insight into the drivers of parasite evolution in the wild.more » « less
-
Abstract Individual animals in natural populations tend to host diverse parasite species concurrently over their lifetimes. In free‐living ecological communities, organismal life histories shape interactions with their environment, which ultimately forms the basis of ecological succession. However, the structure and dynamics of mammalian parasite communities have not been contextualized in terms of primary ecological succession, in part because few datasets track occupancy and abundance of multiple parasites in wild hosts starting at birth. Here, we studied community dynamics of 12 subtypes of protozoan microparasites ( Theileria spp.) in a herd of African buffalo. We show that Theileria communities followed predictable patterns of succession underpinned by four different parasite life history strategies. However, in contrast to many free‐living communities, network complexity decreased with host age. Examining parasite communities through the lens of succession may better inform the effect of complex within host eco‐evolutionary dynamics on infection outcomes, including parasite co‐existence through the lifetime of the host.more » « less
An official website of the United States government

