Colloids at water–oil interfaces can form ordered monolayers when surface charge–induced repulsion overcomes capillary attraction. Such particle monolayers play an important role in the stabilization of emulsions and also can serve as an exquisite model system to study fundamental physical phenomena. However, it is challenging to dynamically control the relative magnitudes of repulsion and attraction between the particles, especially with reversibility, to induce reversible aggregation and dispersion because forces that are relevant tend to be much greater than those induced by thermal fluctuation. Here, the authors show that reversible assembly, that is reversible aggregation and dispersion, can be induced by space charge injection from corona discharge. The authors find that space charge injection modulates the strength of charge‐induced repulsion. By injecting charges, it is possible to either induce aggregation of repulsion‐dominated colloids or dispersion of aggregated particles. Interfacial electrophoretic experiments show that the alteration of the repulsion is caused by the variation of the particle surface charge that results from charge injection. The authors also demonstrate that even particles that initially form aggregated clusters due to low surface charge can be induced to organize into a hexagonally ordered structure. This method can be a powerful tool for studying phenomena involving interface‐trapped particles.
Electrophoretic deposition (EPD) of colloidal particles is a practical system for the study of crystallization and related physical phenomena. The aggregation is driven by the electroosmotic flow fields and induced dipole moments generated by the polarization of the electrode‐particle‐electrolyte interface. Here, the electrochemical control of aggregation and repulsion in the electrophoretic deposition of colloidal microspheres is reported. The nature of the observed transition depended on the composition of the solvent, switching from electrode‐driven aggregation in water to electrical field‐driven repulsion in ethanol for otherwise identical systems of colloidal microspheres. This work uses optical microscopy‐derived particles and a recently developed particle insertion method approach to extract model‐free, effective interparticle potentials to describe the ensemble behavior of the particles as a function of the solvent and electrode potential at the electrode interface. This approach can be used to understand the phase behavior of these systems based on the observable particle positions rather than a detailed understanding of the electrode‐electrolyte microphysics. This approach enables simple predictability of the static and dynamic behaviors of functional colloid‐electrode interfaces.
more » « less- NSF-PAR ID:
- 10442904
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Interfaces
- Volume:
- 10
- Issue:
- 5
- ISSN:
- 2196-7350
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Nonlinear electrophoresis offers advantageous prospects in microfluidic manipulation of particles over linear electrophoresis. Existing theories established for this phenomenon are entirely based on spherical particle models, some of which have been experimentally verified. However, there is no knowledge on if and how the particle shape may affect the nonlinear electrophoretic behavior. This work presents an experimental study of the nonlinear electrophoretic velocities of rigid peanut‐ and pear‐shaped particles in a rectangular microchannel, which are compared with rigid spherical particles of similar diameter and surface charge in terms of the particle slenderness. We observe a decrease in the nonlinear electrophoretic mobility, whereas an increase in the nonlinear index of electric field when the particle slenderness increases from the peanut‐ to pear‐shaped and spherical particles. The values of the nonlinear index for the nonspherical particles are, however, still within the theoretically predicted range for spherical particles. We also observe an enhanced nonlinear electrophoretic behavior in a lower concentration buffer solution regardless of the particle shape.
-
The behavior of colloidal particles near fluid interfaces has attracted significant scientific interest, as particles minimize the contact area between the two fluid phases, stabilizing interfacial systems. This study explores the influence of surface roughness on the properties of particle monolayers at the air–water interface, focusing on colloidal silica particles and fumed silica particles of similar hydrodynamic diameter. This research involves comparing low-surface-area (LSA) and medium-surface-area (MSA) fumed silica particles with spherical colloidal silica particles (250 nm in diameter). Utilizing a Langmuir trough, the interfacial particle networks are compressed and expanded. Analysis of surface pressure isotherms reveals that fumed silica particle monolayers form networks at a lower particle surface coverage compared to spherical particles. The spherical particle monolayer exhibits a higher apparent surface elasticity, indicating greater resistance to the applied compression compared to fumed silica networks. Additionally, monolayers formed by fumed silica particles display hysteresis even after successive compressions and expansions due to irreversible particle interlocking and the formation of multilayered aggregates. These findings provide insights into the impact of surface roughness on the behavior of particle monolayers at fluid interfaces, offering valuable information for designing and optimizing mechanisms involved in emulsion and foam stabilization.
-
Abstract Artificial self‐propelled colloidal particles have recently served as effective building blocks for investigating many dynamic behaviors exhibited by nonequilibrium systems. However, most studies have relied upon excluded volume interactions between the active particles. Experimental systems in which the mobile entities interact over long distances in a well‐defined and controllable manner are valuable so that new modes of multiparticle dynamics can be studied systematically in the laboratory. Here, a system of self‐propelled microscale Janus particles is engineered to have contactless particle–particle interactions that lead to long‐range attraction, short‐range repulsion, and mutual alignment between adjacent swimmers. The unique modes of motion that arise can be tuned by modulating the system's parameters.
-
Abstract The dynamic manipulation of colloidal particle shape offers a novel design mechanism for the creation of advanced responsive materials. To this end, we introduce a versatile new strategy for shape control of anisotropic polymeric colloidal particles. The concept utilizes temperature‐sensitive absorption of a suitable solvent from a binary mixture. Specifically, increasing the temperature in the vicinity of the demixing transition of a binary mixture causes more solvent to be absorbed into the polymeric colloidal particle, which, in turn, lowers the glass transition temperature of the polymer inside the particle, with a concomitant decrease in viscosity. The balance between the internal viscosity and surface tension of the particle is thus disrupted, and the anisotropic shape of the particle shifts to become more spherical. Subsequent rapid temperature quenching can halt the process, leaving the particle with an intermediate anisotropy. The resultant shape anisotropy control provides new routes for studies of the phase transitions of anisotropic colloids and enables the fabrication of unique particles for materials applications.