Abstract Owing to increasing greenhouse gas emissions, the Antarctic Ice Sheet is vulnerable to rapid ice loss in the upcoming decades and centuries. This study examines the effectiveness of using stratospheric aerosol injection (SAI) that minimizes global mean temperature (GMT) change to slow projected 21st century Antarctic ice loss. We simulate 11 different SAI cases which vary by the latitudinal location(s) and the amount(s) of the injection(s) to examine the climatic response near Antarctica in each case as compared to the reference climate at the turn of the last century. We demonstrate that injecting at a single latitude in the northern hemisphere or at the Equator increases Antarctic shelf ocean temperatures pertinent to ice shelf basal melt, while injecting only in the southern hemisphere minimizes this temperature change. We use these results to analyze the results of more complex multi‐latitude injection strategies that maintain GMT at or below 1.5°C above the pre‐industrial. All these multi‐latitude cases will slow Antarctic ice loss relative to the mid‐to‐late 21st century SSP2‐4.5 emissions pathway. Yet, to avoid a GMT threshold estimated by previous studies pertaining to rapid West Antarctic ice loss (1.5°C above the pre‐industrial GMT, though large uncertainty), our study suggests SAI would need to cool about 1.0°C below this threshold and predominately inject at low southern hemisphere latitudes (∼15°S ‐ 30°S). These results highlight the complexity of factors impacting the Antarctic response to SAI and the critical role of the injection strategy in preventing future ice loss. 
                        more » 
                        « less   
                    
                            
                            High‐Latitude Stratospheric Aerosol Injection to Preserve the Arctic
                        
                    
    
            Abstract Stratospheric aerosol injection (SAI) has been shown in climate models to reduce some impacts of global warming in the Arctic, including the loss of sea ice, permafrost thaw, and reduction of Greenland Ice Sheet (GrIS) mass; SAI at high latitudes could preferentially target these impacts. In this study, we use the Community Earth System Model to simulate two Arctic‐focused SAI strategies, which inject at 60°N latitude each spring with injection rates adjusted to either maintain September Arctic sea ice at 2030 levels (“Arctic Low”) or restore it to 2010 levels (“Arctic High”). Both simulations maintain or restore September sea ice to within 10% of their respective targets, reduce permafrost thaw, and increase GrIS surface mass balance by reducing runoff. Arctic High reduces these impacts more effectively than a globally focused SAI strategy that injects similar quantities of SO2at lower latitudes. However, Arctic‐focused SAI is not merely a “reset button” for the Arctic climate, but brings about a novel climate state, including changes to the seasonal cycles of Northern Hemisphere temperature and sea ice and less high‐latitude carbon uptake relative to SSP2‐4.5. Additionally, while Arctic‐focused SAI produces the most cooling near the pole, its effects are not confined to the Arctic, including detectable cooling throughout most of the northern hemisphere for both simulations, increased mid‐latitude sulfur deposition, and a southward shift of the location of the Intertropical Convergence Zone. For these reasons, it would be incorrect to consider Arctic‐focused SAI as “local” geoengineering, even when compared to a globally focused strategy. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2038246
- PAR ID:
- 10442952
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Earth's Future
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2328-4277
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract In contrast to surface greenhouse warming, surface greenhouse cooling has been less explored, especially on multi-century timescales. Here, we assess the processes controlling the pacing and magnitude of the multi-century surface temperature response to instantaneously doubling and halving atmospheric carbon dioxide concentrations in a modern global coupled climate model. Over the first decades, surface greenhouse warming is larger and faster than surface greenhouse cooling both globally and at high northern latitudes (45–90° N). Yet, this initial multi-decadal response difference does not persist. After year 150, additional surface warming is negligible, but surface cooling and sea ice expansion continues. Notably, the equilibration timescale for high northern latitude surface cooling (∼437 years) is more than double the equivalent timescale for warming. The high northern latitude responses differ most at the sea ice edge. Under greenhouse cooling, the sea ice edge slowly creeps southward into the mid-latitude oceans amplified by positive lapse rate and surface albedo feedbacks. While greenhouse warming and sea ice loss at high northern latitudes occurs on multi-decadal timescales, greenhouse cooling and sea ice expansion occurs on multi-century timescales. Overall, this work shows the importance of multi-century timescales and sea ice processes for understanding high northern latitude climate responses.more » « less
- 
            Abstract Stratospheric aerosol geoengineering focused on the Arctic could substantially reduce local and worldwide impacts of anthropogenic global warming. Because the Arctic receives little sunlight during the winter, stratospheric aerosols present in the winter at high latitudes have little impact on the climate, whereas stratospheric aerosols present during the summer achieve larger changes in radiative forcing. Injecting SO2in the spring leads to peak aerosol optical depth (AOD) in the summer. We demonstrate that spring injection produces approximately twice as much summer AOD as year‐round injection and restores approximately twice as much September sea ice, resulting in less increase in stratospheric sulfur burden, stratospheric heating, and stratospheric ozone depletion per unit of sea ice restored. We also find that differences in AOD between different seasonal injection strategies are small compared to the difference between annual and spring injection.more » « less
- 
            Abstract The impacts of Stratospheric Aerosol Injection (SAI) on the atmosphere and surface climate depend on when and where the sulfate aerosol precursors are injected, as well as on how much surface cooling is to be achieved. We use a set of CESM2(WACCM6) SAI simulations achieving three different levels of global mean surface cooling and demonstrate that unlike some direct surface climate impacts driven by the reflection of solar radiation by sulfate aerosols, the SAI‐induced changes in the high latitude circulation and ozone are more complex and could be non‐linear. This manifests in our simulations by disproportionally larger Antarctic springtime ozone loss, significantly larger intra‐ensemble spread of the Arctic stratospheric jet and ozone responses, and non‐linear impacts on the extratropical modes of surface climate variability under the strongest‐cooling SAI scenario compared to the weakest one. These potential non‐linearities may add to uncertainties in projections of regional surface impacts under SAI.more » « less
- 
            While the Atlantic Meridional Overturning Circulation (AMOC) is projected to slow down under anthropogenic warming, the exact role of the AMOC in future climate change has not been fully quantified. Here, we present a method to stabilize the AMOC intensity in anthropogenic warming experiments by removing fresh water from the subpolar North Atlantic. This method enables us to isolate the AMOC climatic impacts in experiments with a full-physics climate model. Our results show that a weakened AMOC can explain ocean cooling south of Greenland that resembles the North Atlantic warming hole and a reduced Arctic sea ice loss in all seasons with a delay of about 6 years in the emergence of an ice-free Arctic in boreal summer. In the troposphere, a weakened AMOC causes an anomalous cooling band stretching from the lower levels in high latitudes to the upper levels in the tropics and displaces the Northern Hemisphere midlatitude jets poleward.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
