skip to main content


Search for: All records

Award ID contains: 2038246

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The impacts of Stratospheric Aerosol Injection (SAI) on the atmosphere and surface climate depend on when and where the sulfate aerosol precursors are injected, as well as on how much surface cooling is to be achieved. We use a set of CESM2(WACCM6) SAI simulations achieving three different levels of global mean surface cooling and demonstrate that unlike some direct surface climate impacts driven by the reflection of solar radiation by sulfate aerosols, the SAI‐induced changes in the high latitude circulation and ozone are more complex and could be non‐linear. This manifests in our simulations by disproportionally larger Antarctic springtime ozone loss, significantly larger intra‐ensemble spread of the Arctic stratospheric jet and ozone responses, and non‐linear impacts on the extratropical modes of surface climate variability under the strongest‐cooling SAI scenario compared to the weakest one. These potential non‐linearities may add to uncertainties in projections of regional surface impacts under SAI.

     
    more » « less
  2. Abstract

    Owing to increasing greenhouse gas emissions, the Antarctic Ice Sheet is vulnerable to rapid ice loss in the upcoming decades and centuries. This study examines the effectiveness of using stratospheric aerosol injection (SAI) that minimizes global mean temperature (GMT) change to slow projected 21st century Antarctic ice loss. We simulate 11 different SAI cases which vary by the latitudinal location(s) and the amount(s) of the injection(s) to examine the climatic response near Antarctica in each case as compared to the reference climate at the turn of the last century. We demonstrate that injecting at a single latitude in the northern hemisphere or at the Equator increases Antarctic shelf ocean temperatures pertinent to ice shelf basal melt, while injecting only in the southern hemisphere minimizes this temperature change. We use these results to analyze the results of more complex multi‐latitude injection strategies that maintain GMT at or below 1.5°C above the pre‐industrial. All these multi‐latitude cases will slow Antarctic ice loss relative to the mid‐to‐late 21st century SSP2‐4.5 emissions pathway. Yet, to avoid a GMT threshold estimated by previous studies pertaining to rapid West Antarctic ice loss (1.5°C above the pre‐industrial GMT, though large uncertainty), our study suggests SAI would need to cool about 1.0°C below this threshold and predominately inject at low southern hemisphere latitudes (∼15°S ‐ 30°S). These results highlight the complexity of factors impacting the Antarctic response to SAI and the critical role of the injection strategy in preventing future ice loss.

     
    more » « less
  3. Abstract

    The specifics of the simulated injection choices in the case of stratospheric aerosol injections (SAI) are part of the crucial context necessary for meaningfully discussing the impacts that a deployment of SAI would have on the planet. One of the main choices is the desired amount of cooling that the injections are aiming to achieve. Previous SAI simulations have usually either simulated a fixed amount of injection, resulting in a fixed amount of warming being offset, or have specified one target temperature, so that the amount of cooling is only dependent on the underlying trajectory of greenhouse gases. Here, we use three sets of SAI simulations achieving different amounts of global mean surface cooling while following a middle‐of‐the‐road greenhouse gas emission trajectory: one SAI scenario maintains temperatures at 1.5°C above preindustrial levels (PI), and two other scenarios which achieve additional cooling to 1.0°C and 0.5°C above PI. We demonstrate that various surface impacts scale proportionally with respect to the amount of cooling, such as global mean precipitation changes, changes to the Atlantic Meridional Overturning Circulation and to the Walker Cell. We also highlight the importance of the choice of the baseline period when comparing the SAI responses to one another and to the greenhouse gas emission pathway. This analysis leads to policy‐relevant discussions around the concept of a reference period altogether, and to what constitutes a relevant, or significant, change produced by SAI.

     
    more » « less
  4. Abstract

    Stratospheric aerosol injection (SAI) has been shown in climate models to reduce some impacts of global warming in the Arctic, including the loss of sea ice, permafrost thaw, and reduction of Greenland Ice Sheet (GrIS) mass; SAI at high latitudes could preferentially target these impacts. In this study, we use the Community Earth System Model to simulate two Arctic‐focused SAI strategies, which inject at 60°N latitude each spring with injection rates adjusted to either maintain September Arctic sea ice at 2030 levels (“Arctic Low”) or restore it to 2010 levels (“Arctic High”). Both simulations maintain or restore September sea ice to within 10% of their respective targets, reduce permafrost thaw, and increase GrIS surface mass balance by reducing runoff. Arctic High reduces these impacts more effectively than a globally focused SAI strategy that injects similar quantities of SO2at lower latitudes. However, Arctic‐focused SAI is not merely a “reset button” for the Arctic climate, but brings about a novel climate state, including changes to the seasonal cycles of Northern Hemisphere temperature and sea ice and less high‐latitude carbon uptake relative to SSP2‐4.5. Additionally, while Arctic‐focused SAI produces the most cooling near the pole, its effects are not confined to the Arctic, including detectable cooling throughout most of the northern hemisphere for both simulations, increased mid‐latitude sulfur deposition, and a southward shift of the location of the Intertropical Convergence Zone. For these reasons, it would be incorrect to consider Arctic‐focused SAI as “local” geoengineering, even when compared to a globally focused strategy.

     
    more » « less
  5. Abstract

    By injecting SO2into the stratosphere at four latitudes (30°, 15°N/S), it might be possible not only to reduce global mean surface temperature but also to minimize changes in the equator‐to‐pole and inter‐hemispheric gradients of temperature, further reducing some of the impacts arising from climate change relative to equatorial injection. This can happen only if the aerosols are transported to higher latitudes by the stratospheric circulation, ensuring that a greater part of the solar radiation is reflected back to space at higher latitudes, compensating for the reduced sunlight. However, the stratospheric heating produced by these aerosols modifies the circulation and strengthens the stratospheric polar vortex which acts as a barrier to the transport of air toward the poles. We show how the heating results in a feedback where increasing injection rates lead to stronger high‐latitudinal transport barriers. This implies a potential limitation in the high‐latitude aerosol burden and subsequent cooling.

     
    more » « less
  6. Abstract. Solar climate intervention using stratospheric aerosol injection (SAI) has been proposed as a method which could offset some of the adverse effects of global warming. The Assessing Responses and Impacts of Solar climate intervention on the Earth system with Stratospheric Aerosol Injection (ARISE-SAI) set of simulations is based on a moderate-greenhouse-gas-emission scenario and employs injection of sulfur dioxide at four off-equatorial locations using a control algorithm which maintains the global-mean surface temperature at 1.5 K above pre-industrial conditions (ARISE-SAI-1.5), as well as the latitudinal gradient and inter-hemispheric difference in surface temperature. This is the first comparison between two models (CESM2 and UKESM1) applying the same multi-target SAI strategy. CESM2 is successful in reaching its temperature targets, but UKESM1 has considerable residual Arctic warming. This occurs because the pattern of temperature change in a climate with SAI is determined by both the structure of the climate forcing (mainly greenhouse gases and stratospheric aerosols) and the climate models' feedbacks, the latter of which favour a strong Arctic amplification of warming in UKESM1. Therefore, research constraining the level of future Arctic warming would also inform any hypothetical SAI deployment strategy which aims to maintain the inter-hemispheric and Equator-to-pole near-surface temperature differences. Furthermore, despite broad agreement in the precipitation response in the extratropics, precipitation changes over tropical land show important inter-model differences, even under greenhouse gas forcing only. In general, this ensemble comparison is the first step in comparing policy-relevant scenarios of SAI and will help in the design of an experimental protocol which both reduces some known negative side effects of SAI and is simple enough to encourage more climate models to participate.

     
    more » « less
  7. Abstract. Despite offsetting global mean surface temperature, various studies demonstrated that stratospheric aerosol injection (SAI) could influence the recovery of stratospheric ozone and have important impacts on stratospheric and tropospheric circulation, thereby potentially playing an important role in modulating regional and seasonal climate variability. However, so far, most of the assessments of such an approach have come from climate model simulations in which SO2 is injected only in a single location or a set of locations. Here we use CESM2-WACCM6 SAI simulations under a comprehensive set of SAI strategies achieving the same global mean surface temperature with different locations and/or timing of injections, namely an equatorial injection, an annual injection of equal amounts of SO2 at 15∘ N and 15∘ S, an annual injection of equal amounts of SO2 at 30∘ N and 30∘ S, and a polar strategy injecting SO2 at 60∘ N and 60∘ S only in spring in each hemisphere. We demonstrate that despite achieving the same global mean surface temperature, the different strategies result in contrastingly different magnitudes of the aerosol-induced lower stratospheric warming, stratospheric moistening, strengthening of stratospheric polar jets in both hemispheres, and changes in the speed of the residual circulation. These impacts tend to maximise under the equatorial injection strategy and become smaller as the aerosols are injected away from the Equator into the subtropics and higher latitudes. In conjunction with the differences in direct radiative impacts at the surface, these different stratospheric changes drive different impacts on the extratropical modes of variability (Northern and Southern Annular modes), including important consequences on the northern winter surface climate, and on the intensity of tropical tropospheric Walker and Hadley circulations, which drive tropical precipitation patterns. Finally, we demonstrate that the choice of injection strategy also plays a first-order role in the future evolution of stratospheric ozone under SAI throughout the globe. Overall, our results contribute to an increased understanding of the fine interplay of various radiative, dynamical, and chemical processes driving the atmospheric circulation and ozone response to SAI and lay the foundation for designing an optimal SAI strategy that could form a basis of future multi-model intercomparisons.

     
    more » « less
  8. Making informed future decisions about solar radiation modification (SRM; also known as solar geoengineering)—approaches such as stratospheric aerosol injection (SAI) that would cool the climate by reflecting sunlight—requires projections of the climate response and associated human and ecosystem impacts. These projections, in turn, will rely on simulations with global climate models. As with climate-change projections, these simulations need to adequately span a range of possible futures, describing different choices, such as start date and temperature target, as well as risks, such as termination or interruptions. SRM modeling simulations to date typically consider only a single scenario, often with some unrealistic or arbitrarily chosen elements (such as starting deployment in 2020), and have often been chosen based on scientific rather than policy-relevant considerations (e.g., choosing quite substantial cooling specifically to achieve a bigger response). This limits the ability to compare risks both between SRM and non-SRM scenarios and between different SRM scenarios. To address this gap, we begin by outlining some general considerations on scenario design for SRM. We then describe a specific set of scenarios to capture a range of possible policy choices and uncertainties and present corresponding SAI simulations intended for broad community use. 
    more » « less
  9. Abstract. Stratospheric aerosol injection (SAI), as a possible supplement to emission reduction, has the potential to reduce some of the risks associated with climate change. Adding aerosols to the lower stratosphere would result in temporary global cooling. However, different choices for the aerosol injection latitude(s) and season(s) have been shown to lead to significant differences in regional surface climate, introducing a design aspect to SAI. Past research has shown that there are at least three independent degrees of freedom (DOFs) that can be used to simultaneously manage three different climate goals. Knowing how many more DOFs there are, and thus how many independent climate goals can be simultaneously managed, is essential to understanding fundamental limits of how well SAI might compensate for anthropogenic climate change, and evaluating any underlying trade-offs between different climate goals. Here, we quantify the number of meaningfully independent DOFs of the SAI design space. This number of meaningfully independent DOFs depends on both the amount of cooling and the climate variables used for quantifying the changes in surface climate. At low levels of global cooling, only a small set of injection choices yield detectably different surface climate responses. For a cooling level of 1–1.5 ∘C, we find that there are likely between six and eight meaningfully independent DOFs. This narrows down the range of available DOFs and also reveals new opportunities for exploring alternate SAI designs with different distributions of climate impacts. 
    more » « less