Abstract Stratospheric aerosol injection (SAI) has been shown in climate models to reduce some impacts of global warming in the Arctic, including the loss of sea ice, permafrost thaw, and reduction of Greenland Ice Sheet (GrIS) mass; SAI at high latitudes could preferentially target these impacts. In this study, we use the Community Earth System Model to simulate two Arctic‐focused SAI strategies, which inject at 60°N latitude each spring with injection rates adjusted to either maintain September Arctic sea ice at 2030 levels (“Arctic Low”) or restore it to 2010 levels (“Arctic High”). Both simulations maintain or restore September sea ice to within 10% of their respective targets, reduce permafrost thaw, and increase GrIS surface mass balance by reducing runoff. Arctic High reduces these impacts more effectively than a globally focused SAI strategy that injects similar quantities of SO2at lower latitudes. However, Arctic‐focused SAI is not merely a “reset button” for the Arctic climate, but brings about a novel climate state, including changes to the seasonal cycles of Northern Hemisphere temperature and sea ice and less high‐latitude carbon uptake relative to SSP2‐4.5. Additionally, while Arctic‐focused SAI produces the most cooling near the pole, its effects are not confined to the Arctic, including detectable cooling throughout most of the northern hemisphere for both simulations, increased mid‐latitude sulfur deposition, and a southward shift of the location of the Intertropical Convergence Zone. For these reasons, it would be incorrect to consider Arctic‐focused SAI as “local” geoengineering, even when compared to a globally focused strategy.
more »
« less
Stratospheric Aerosol Injection Can Reduce Risks to Antarctic Ice Loss Depending on Injection Location and Amount
Abstract Owing to increasing greenhouse gas emissions, the Antarctic Ice Sheet is vulnerable to rapid ice loss in the upcoming decades and centuries. This study examines the effectiveness of using stratospheric aerosol injection (SAI) that minimizes global mean temperature (GMT) change to slow projected 21st century Antarctic ice loss. We simulate 11 different SAI cases which vary by the latitudinal location(s) and the amount(s) of the injection(s) to examine the climatic response near Antarctica in each case as compared to the reference climate at the turn of the last century. We demonstrate that injecting at a single latitude in the northern hemisphere or at the Equator increases Antarctic shelf ocean temperatures pertinent to ice shelf basal melt, while injecting only in the southern hemisphere minimizes this temperature change. We use these results to analyze the results of more complex multi‐latitude injection strategies that maintain GMT at or below 1.5°C above the pre‐industrial. All these multi‐latitude cases will slow Antarctic ice loss relative to the mid‐to‐late 21st century SSP2‐4.5 emissions pathway. Yet, to avoid a GMT threshold estimated by previous studies pertaining to rapid West Antarctic ice loss (1.5°C above the pre‐industrial GMT, though large uncertainty), our study suggests SAI would need to cool about 1.0°C below this threshold and predominately inject at low southern hemisphere latitudes (∼15°S ‐ 30°S). These results highlight the complexity of factors impacting the Antarctic response to SAI and the critical role of the injection strategy in preventing future ice loss.
more »
« less
- PAR ID:
- 10474165
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 128
- Issue:
- 22
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Climate change is a prevalent threat, and it is unlikely that current mitigation efforts will be enough to avoid unwanted impacts. One potential option to reduce climate change impacts is the use of stratospheric aerosol injection (SAI). Even if SAI is ultimately deployed, it might be initiated only after some temperature target is exceeded. The consequences of such a delay are assessed herein. This study compares two cases, with the same target global mean temperature of ∼1.5° C above preindustrial, but start dates of 2035 or a ‘delayed’ start in 2045. We make use of simulations in the Community Earth System Model version 2 with the Whole Atmosphere Coupled Chemistry Model version 6 (CESM2-WACCM6), using SAI under the SSP2-4.5 emissions pathway. We find that delaying the start of deployment (relative to the target temperature) necessitates lower net radiative forcing (−30%) and thus larger sulfur dioxide injection rates (+20%), even after surface temperatures converge, to compensate for the extra energy absorbed by the Earth system. Southern hemisphere ozone is higher from 2035 to 2050 in the delayed start scenario, but converges to the same value later in the century. However, many of the surface climate differences between the 2035 and 2045 start simulations appear to be small during the 10–25 years following the delayed SAI start, although longer simulations would be needed to assess any longer-term impacts in this model. In addition, irreversibilities and tipping points that might be triggered during the period of increased warming may not be adequately represented in the model but could change this conclusion in the real world.more » « less
-
Abstract. Despite offsetting global mean surface temperature, various studies demonstrated that stratospheric aerosol injection (SAI) could influence the recovery of stratospheric ozone and have important impacts on stratospheric and tropospheric circulation, thereby potentially playing an important role in modulating regional and seasonal climate variability. However, so far, most of the assessments of such an approach have come from climate model simulations in which SO2 is injected only in a single location or a set of locations. Here we use CESM2-WACCM6 SAI simulations under a comprehensive set of SAI strategies achieving the same global mean surface temperature with different locations and/or timing of injections, namely an equatorial injection, an annual injection of equal amounts of SO2 at 15∘ N and 15∘ S, an annual injection of equal amounts of SO2 at 30∘ N and 30∘ S, and a polar strategy injecting SO2 at 60∘ N and 60∘ S only in spring in each hemisphere. We demonstrate that despite achieving the same global mean surface temperature, the different strategies result in contrastingly different magnitudes of the aerosol-induced lower stratospheric warming, stratospheric moistening, strengthening of stratospheric polar jets in both hemispheres, and changes in the speed of the residual circulation. These impacts tend to maximise under the equatorial injection strategy and become smaller as the aerosols are injected away from the Equator into the subtropics and higher latitudes. In conjunction with the differences in direct radiative impacts at the surface, these different stratospheric changes drive different impacts on the extratropical modes of variability (Northern and Southern Annular modes), including important consequences on the northern winter surface climate, and on the intensity of tropical tropospheric Walker and Hadley circulations, which drive tropical precipitation patterns. Finally, we demonstrate that the choice of injection strategy also plays a first-order role in the future evolution of stratospheric ozone under SAI throughout the globe. Overall, our results contribute to an increased understanding of the fine interplay of various radiative, dynamical, and chemical processes driving the atmospheric circulation and ozone response to SAI and lay the foundation for designing an optimal SAI strategy that could form a basis of future multi-model intercomparisons.more » « less
-
The agreement reached at the 21st Conference of the Parties (COP21) of the United Nations Framework Conven- tion on Climate Change (UNFCC) is aimed at limiting the post-preindustrial rise in global mean temperature to less than 2 oC at the end of this century, and to promote further efforts to limit the warming to 1.5 oC. Here, we use a numerical ice sheet-shelf model, with physics tested and calibrated against modern and past ice-sheet behavior and coupled to highly resolved atmospheric and ocean components, to test the Antarctic Ice Sheet’s response to a range of future climate scenarios representing COP21 aspirations versus a fossil-fuel intensive RCP8.5 emissions scenario. Assuming COP21 temperature targets are achievable and those temperatures will not be exceeded beyond 2100, we find that a global mean temperature rise less than 2 oC substantially reduces both the short term (decadal- century) and long-term risk of catastrophic sea level rise from Antarctica. In contrast, we find that the current, Intended Nationally Determined Contributions (INDCs), allowing global mean temperature to approach ∼3 oC by the end of this century, results in a substantial increase in Antarctica’s contribution to sea-level rise, relative to 1.5 or 2 oC. The results suggest that the current INCDs might not be sufficient to save the West Antarctic Ice Sheet and some East Antarctic outlets from substantial retreat.more » « less
-
Abstract Earth system models are powerful tools to simulate the climate response to hypothetical climate intervention strategies, such as stratospheric aerosol injection (SAI). Recent simulations of SAI implement a tool from control theory, called a controller, to determine the quantity of aerosol to inject into the stratosphere to reach or maintain specified global temperature targets, such as limiting global warming to 1.5°C above pre‐industrial temperatures. This work explores how internal (unforced) climate variability can impact controller‐determined injection amounts using the Assessing Responses and Impacts of Solar climate intervention on the Earth system with Stratospheric Aerosol Injection (ARISE‐SAI) simulations. Since the ARISE‐SAI controller determines injection amounts by comparing global annual‐mean surface temperature to predetermined temperature targets, internal variability that impacts temperature can impact the total injection amount as well. Using an offline version of the ARISE‐SAI controller and data from Earth system model simulations, we quantify how internal climate variability and volcanic eruptions impact injection amounts. While idealized, this approach allows for the investigation of a large variety of climate states without additional simulations and can be used to attribute controller sensitivities to specific modes of internal variability.more » « less