skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electrolytes on the prairie: How urine‐like additions of Na and K shape the dynamics of a grassland food web
Abstract The electrolytes Na and K both function to maintain water balance and membrane potential. However, these elements work differently in plants—where K is the primary electrolyte—than in animals—where ATPases require a balanced supply of Na and K. Here, we use monthly factorial additions of Na and K to simulate bovine urine inputs and explore how these electrolytes ramify through a prairie food web. Against a seasonal trend of increasing grass biomass and decreasing water and elemental tissue concentrations, +K and +Na plots boosted water content and, when added together, plant biomass. Compared to control plots, +Na and +K plots increased element concentrations in above‐ground plant tissue early in summer and decreased them in September. Simultaneously, invertebrate abundance on Na and K additions were sequentially higher and lower than control plots from June to September and were most suppressed when grass was most nutrient rich. K was the more effective plant electrolyte, but Na frequently promoted similar changes in grass ionomes. The soluble/leachable ions of Na and K showed significant ability to shape plant growth, water content, and the 15‐element ionome, with consequences for higher trophic levels. Grasslands with high inputs of Na and K—via large mammal grazers or coastal aerosol deposition—likely enhance the ability of plants to adjust their above‐ground ionomes, with dramatic consequences for the distribution of invertebrate consumers.  more » « less
Award ID(s):
1702426 2025849
PAR ID:
10442953
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
104
Issue:
1
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sodium (Na) is an essential element for all animals, but not for plants. Soil Na supplies vary geographically. Animals that primarily consume plants thus have the potential to be Na limited and plants that uptake Na may be subject to higher rates of herbivory, but their high Na content also may attract beneficial partners such as pollinators and seed dispersers.To test for the effects of Na biogeochemistry on herbivory, we conducted distributed Na press experiments (monthly Na application across the growing season) in four North American grasslands.Na addition increased soil and plant Na concentrations at all sites. Grasses in Na addition plots had significantly higher herbivore damage by leaf miners and fungal pathogens than those in control plots. Forbs with higher foliar Na concentrations had significantly more chewing insect herbivore and fungal damage.While no pattern was evident across all species, several forb species had higher Na concentrations in inflorescences compared to leaves, suggesting they may allocate Na to attract beneficial partners.The uptake of Na by plants, and animal responses, has implications for the salinification in the Anthropocene. Increased use of road salt, irrigation with saline groundwater, rising sea levels and increasing temperatures and evapotranspiration rates with climate change can all increase inputs of Na into terrestrial ecosystems.Our results suggest increasing terrestrial Na availability will benefit insect herbivores and plant fungal pathogens. A freePlain Language Summarycan be found within the Supporting Information of this article. 
    more » « less
  2. Hu, Shuijin (Ed.)
    Abstract Aims Linkages formed through aquatic–terrestrial subsidies can play an important role in structuring communities and mediating ecosystem functions. Aquatic–terrestrial subsidies may be especially important in nutrient-poor ecosystems, such as the freshwater sand dunes surrounding Lake Michigan. Adult midges emerge from Lake Michigan in the spring, swarm to mate and die. Their carcasses form mounds at the base of plants, where they may increase plant productivity through their nutrient inputs. However, the effect of aquatic–terrestrial subsidies on plant productivity could depend on other biotic interactions. In particular, soil microbes might play a key role in facilitating the conversion of nutrients to plant-available forms or competing for the nutrients with plants. Methods In a greenhouse experiment, we tested how carcasses from lake emergent midges (Chironomidae) and soil microbes independently and interactively influenced the performance of a common dune grass, Calamovilfa longifolia. To determine whether midges influenced abiotic soil properties, we measured how midge additions influenced soil nutrients and soil moisture. Important Findings Midges greatly increased plant biomass, while soil microbes influenced the magnitude of this effect. In the absence of soil microbes plant biomass was seven times greater with midges than without midges. However, in the presence of soil microbes, plant biomass was only three times greater. The effect of midges might be driven by their nutrient inputs into the soil, as midges contained 100 times more N, 10 times more P and 150 times more K than dune soils did. Our results suggest that soil microbes may be competing with plants for these nutrients. In sum, we found that midges can be an important aquatic–terrestrial subsidy that produces strong, positive effects on plant productivity along the shorelines of Lake Michigan, but that the impact of aquatic–terrestrial subsidies must be considered within the context of the complex interactions that take place within ecological communities. 
    more » « less
  3. In this dataset, we report ecophysiological variables of contrasting perennial grass (Bouteloua eriopoda, Sporobolus airoides, and Aristida purpurea) and shrub (Prosopis glandulosa, Atriplex canescens, and Larrea tridentata) functional groups before and after a series of simulated sandblasting events with various intensities and frequencies. We hypothesized that grass species are more susceptible to the resulting "sandblasting" (i.e., abrasive damage by wind-blown particulates) than shrubs, thus contributing to the shift from grass to shrub dominance. To test this, we conducted a wind tunnel experiment at the USDA Jornada Experimental Range in 2018 and 2019 growing seasons. Potted plants were subjected to different levels of sandblasting in a novel portable wind tunnel, and plants’ ecophysiological responses including leaf gas exchange and nighttime leaf stomatal conductance were quantified. All tested plants were then grown in benign greenhouse conditions to investigate plant recovery post sandblasting. This dataset contains data about plant biomass and height, leaf chlorophyll content, leaf gas exchange, stomatal conductance, and water use efficiency (WUE) under the experimental treatments above. This study is complete. 
    more » « less
  4. ABSTRACT ‘Water potential’ is the biophysically relevant measure of water status in vegetation relating to stomatal, canopy and hydraulic conductance, as well as mortality thresholds; yet, this cannot be directly related to measured and modelled fluxes of water at plot‐ to landscape‐scale without understanding its relationship with ‘water content’. The capacity for detecting vegetation water content via microwave remote sensing further increases the need to understand the link between water content and ecosystem function. In this review, we explore how the fundamental measures of water status, water potential and water content are linked at ecosystem‐scale drawing on the existing theory of pressure‐volume (PV) relationships. We define and evaluate the concept and limitations of applying PV relationships to ecosystems where the quantity of water can vary on short timescales with respect to plant water status, and over longer timescales and over larger areas due to structural changes in vegetation. As a proof of concept, plot‐scale aboveground vegetation PV curves were generated from equilibrium (e.g., predawn) water potentials and water content of the above ground biomass of nine plots, including tropical rainforest, savanna, temperate forest, and a long‐term Amazonian rainforest drought experiment. Initial findings suggest that the stored water and ecosystem capacitance scale linearly with biomass across diverse systems, while the relative values of ecosystem hydraulic capacitance and physiologically accessible water storage do not vary systematically with biomass. The bottom‐up scaling approach to ecosystem water relations identified the need to characterise the distribution of water potentials within a community and also revealed the relevance of community‐level plant tissue fractions to ecosystem water relations. We believe that this theory will be instrumental in linking our detailed understanding of biophysical processes at tissue‐scale to the scale at which land surface models operate and at which tower‐based, airborne and satellite remote sensing can provide information. 
    more » « less
  5. Processes driving nutrient retention in stormwater green infrastructure (SGI) are not well quantified in water-limited biomes. We examined the role of plant diversity and physiochemistry as drivers of microbial community physiology and soil N dynamics post precipitation pulses in a semi-arid region experiencing drought. We conducted our study in bioswales receiving experimental water additions and a montane meadow intercepting natural rainfall. Pulses of water generally elevated soil moisture and pH, stimulated ecoenzyme activity (EEA), and increased the concentration of organic matter, proteins, and N pools in both bioswale and meadow soils. Microbial community growth was static, and N assimilation into biomass was limited across pulse events. Unvegetated plots had greater soil moisture than vegetated plots at the bioswale site, yet we detected no clear effect of plant diversity on microbial C:N ratios, EEAs, organic matter content, and N pools. Differences in soil N concentrations in bioswales and the meadow were most directly correlated to changes in organic matter content mediated by ecoenzyme expression and the balance of C, N, and P resources available to microbial communities. Our results add to growing evidence that SGI ecological function is largely comparable to neighboring natural vegetated systems, particularly when soil media and water availability are similar. 
    more » « less