Abstract Climate change is shifting the environmental cues that determine the phenology of interacting species. Plant–pollinator systems may be susceptible to temporal mismatch if bees and flowering plants differ in their phenological responses to warming temperatures. While the cues that trigger flowering are well‐understood, little is known about what determines bee phenology. Using generalised additive models, we analyzed time‐series data representing 67 bee species collected over 9 years in the Colorado Rocky Mountains to perform the first community‐wide quantification of the drivers of bee phenology. Bee emergence was sensitive to climatic variation, advancing with earlier snowmelt timing, whereas later phenophases were best explained by functional traits including overwintering stage and nest location. Comparison of these findings to a long‐term flower study showed that bee phenology is less sensitive than flower phenology to climatic variation, indicating potential for reduced synchrony of flowers and pollinators under climate change. 
                        more » 
                        « less   
                    
                            
                            Skewness in bee and flower phenological distributions
                        
                    
    
            Abstract Phenological distributions are characterized by their central tendency, breadth, and shape, and all three determine the extent to which interacting species overlap in time. Pollination mutualisms rely on temporal co‐occurrence of pollinators and their floral resources, and although much work has been done to characterize the shapes of flower phenological distributions, similar studies that include pollinators are lacking. Here, we provide the first broad assessment of skewness, a component of distribution shape, for a bee community. We compare skewness in bees to that in flowers, relate bee and flower skewness to other properties of their phenology, and quantify the potential consequences of differences in skewness between bees and flowers. Both bee and flower phenologies tend to be right‐skewed, with a more exaggerated asymmetry in bees. Early‐season species tend to be the most skewed, and this relationship is also stronger in bees than in flowers. Based on a simulation experiment, differences in bee and flower skewness could account for up to 14% of pairwise overlap differences. Given the potential for interaction loss, we argue that difference in skewness of interacting species is an underappreciated property of phenological change. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2016749
- PAR ID:
- 10442975
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 104
- Issue:
- 1
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Climate change‐induced range shifts can disrupt interactions among species by moving them in and out of ecological communities. These disruptions can include impacts on competition for shared resources. Bumble bees (Bombusspp.) are important pollinators shifting their range upwards in elevation in response to climate change. These shifts could lead to altered competition among species and threaten co‐existence. This could be particularly worrying at the tops of mountain ranges where bumble bees may no longer be able to move up to higher elevations to track climate change. To better understand this issue, we investigated changes in diet niche overlap among bumble bee species along a 2296 m elevation gradient in the southern Rocky Mountains. Additionally, we investigated how morphological and phenological traits impact diet composition (flower species visited) among bumble bee species and explored a simple simulation to understand how the continued upward movement of bumble bee species under climate change into the mountaintop may affect trait overlap of newly co‐occurring species. We found that diet niche overlap among bumble bee species increased with elevation. We also found that differences in morphological and phenological traits (body size, tongue length, date of activity) were correlated with differences in diet composition among bumble bee species. Finally, we described how the co‐occurrence of bumble bee species from lower elevations with mountaintop species would lead to increased trait overlap and likely more species sharing similar flowers. These shifts could lead to increased competition for high‐elevation restricted species on mountaintops and exacerbate the effects of climate change on high‐elevation bumble bees.more » « less
- 
            Abstract Flowers may become inoculated with pathogens that can infect bees and other critical pollinators, but the mechanisms of inoculation remain unclear. During foraging, bees may regurgitate or defecate directly onto flower parts, which could inoculate flowers with pollinator pathogens and lead to subsequent disease transmission to floral visitors. We tested if captive eastern bumble bees (Bombus impatiens) (Cresson) (Hymenoptera: Apidae) defecate on floral surfaces during foraging and if flower shape played a role in the probability of defecation and the quantity of feces deposited on floral surfaces. Captive Bombus impatiens were fed a solution of fluorescent dye and sucrose, then allowed to forage freely on flowers of a variety of shapes in a flight cage. Flowers were then examined under ultraviolet light for fluorescing fecal matter. We found that bumble bees did defecate on floral surfaces during foraging and that composite flowers with a large area of disk flowers were the most likely to have feces on them. Our results point to defecation by bumble bees during foraging as a potential mechanism for inoculation of flowers with pollinator pathogens and suggest that flower shape could play a significant role in inoculation.more » « less
- 
            Abstract Flowers can be transmission platforms for parasites that impact bee health, yet bees share floral resources with other pollinator taxa, such as flies, that may be hosts or non-host vectors (i.e., mechanical vectors) of parasites. Here, we assessed whether the fecal-orally transmitted gut parasite of bees,Crithidia bombi, can infectEristalis tenaxflower flies. We also investigated the potential for two confirmed solitary bee hosts ofC. bombi,Osmia lignariaandMegachile rotundata, as well as two flower fly species,Eristalis arbustorumandE. tenax,to transmit the parasite at flowers. We found thatC. bombidid not replicate (i.e., cause an active infection) inE. tenaxflies. However, 93% of inoculated flies defecated liveC. bombiin their first fecal event, and all contaminated fecal events containedC. bombiat concentrations sufficient to infect bumble bees. Flies and bees defecated inside the corolla (flower) more frequently than other plant locations, and flies defecated at volumes comparable to or greater than bees. Our results demonstrate thatEristalisflower flies are not hosts ofC. bombi, but they may be mechanical vectors of this parasite at flowers. Thus, flower flies may amplify or diluteC. bombiin bee communities, though current theoretical work suggests that unless present in large populations, the effects of mechanical vectors will be smaller than hosts.more » « less
- 
            Climate change can lead to “secondary extinction risks” for plants owing to the decoupling of life-cycle events of plants and their pollinators (i.e., phenological mismatch). However, forecasting secondary extinction risk under future climate change remains challenging. We developed a new framework to quantify plants’ secondary extinction risk associated with phenological mismatch with bees using ca. 15,000 crowdsourced specimen records of Viola species and their solitary bee pollinators spanning 120 years across the eastern United States. We further examined latitudinal patterns in secondary extinction risk and explored how latitudinal variation in plant-pollinator specialization influence this risk. Secondary extinction risk of Viola spp. increases with latitude, indicating that future climate change likely will pose a greater threat to plant-bee pollinator networks at northern latitudes. Additionally, the sensitivity of secondary extinction risk to phenological mismatch with both generalist and specialist bee pollinators decreases with latitude: specialist bees display a sharper decrease at higher latitudes. Our findings demonstrate that existing conservation priorities identified solely based on primary extinction risk directly caused by climate change may not be sufficient to support self-sustaining populations of plants. Incorporating secondary extinction risk resulting from ecological mismatches between plants and pollinators into future global conservation frameworks should be carefully considered.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
