This work is motivated by a longstanding interest in the long time behavior of flow‐structure interaction (FSI) PDE dynamics. We consider a linearized compressible flow structure interaction (FSI) PDE model with a view of analyzing the stability properties of both the compressible flow and plate solution components. In our earlier work, we gave an answer in the affirmative to question of uniform stability for finite energy solutions of said compressible flow‐structure system, by means of a “frequency domain” approach. However, the frequency domain method of proof in that work is not “robust” (insofar as we can see), when one wishes to study longtime behavior of solutions of compressible flow‐structure PDE models, which track the appearance of the ambient state onto the boundary interface. Nor is a frequency domain approach in this earlier work availing when one wishes to consider the dynamics, in long time, of solutions to physically relevant nonlinear versions of the compressible flow‐structure PDE system under present consideration (e.g., the Navier–Stokes nonlinearity in the PDE flow component or a nonlinearity of Berger/Von Karman type in the plate equation). Accordingly, in the present work, we operate in the time domain by way of obtaining the necessary energy estimates, which culminate in an alternative proof for the uniform stability of finite energy compressible flow‐structure solutions. Since there is a need to avoid steady states in our stability analysis, as a prerequisite result, we also show here that zero is an eigenvalue for the generators of flow‐structure systems, whether the material derivative term be absent or present. Moreover, we provide a clean characterization of the (one dimensional) zero eigenspace, with or without material derivative, under an appropriate assumption on the underlying ambient vector field.
more »
« less
Semigroup wellposedness and asymptotic stability of a compressible Oseen–structure interaction via a pointwise resolvent criterion
Abstract In this study, we consider the Oseen structure of the linearization of a compressible fluid–structure interaction (FSI) system for which the interaction interface is under the effect of material derivative term. The flow linearization is taken with respect to an arbitrary, variable ambient vector field. This process produces extra “convective derivative” and “material derivative” terms, which render the coupled system highly nondissipative. We show first a new well‐posedness result for the full incorporation of both Oseen terms, which provides a uniformly bounded semigroup via dissipativity and perturbation arguments. In addition, we analyze the long time dynamics in the sense of asymptotic (strong) stability in an invariant subspace (one‐dimensional less) of the entire state space, where the continuous semigroup isuniformly bounded. For this, we appeal to the pointwise resolvent condition introduced in Chill and Tomilov [Stability of operator semigroups: ideas and results, perspectives in operator theory Banach center publications,75(2007), Institute of Mathematics Polish Academy of Sciences, Warszawa, 71–109], which avoids an immensely technical and challenging spectral analysis and provides a short and relatively easy‐to‐follow proof.
more »
« less
- Award ID(s):
- 1907823
- PAR ID:
- 10443034
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Mathematische Nachrichten
- Volume:
- 296
- Issue:
- 3
- ISSN:
- 0025-584X
- Page Range / eLocation ID:
- p. 1135-1155
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report the synthesis, X‐ray crystal structure, and molecular recognition properties of pillar[n]arene derivativeP[6]AS, which we refer to as Pillar[6]MaxQ along with analoguesP[5]ASandP[7]AStoward guests1–18. The ultratight binding affinity ofP[5]ASandP[6]AStoward quaternary (di)ammonium ions renders them prime candidates for in vitro and in vivo non‐covalent bioconjugation, for imaging and delivery applications, and as in vivo sequestration agents.more » « less
-
Abstract This work focuses on modeling the interaction between an incompressible, viscous fluid and a poroviscoelastic material. The fluid flow is described using the time‐dependent Stokes equations, and the poroelastic material using the Biot model. The viscoelasticity is incorporated in the equations using a linear Kelvin–Voigt model. We introduce two novel, noniterative, partitioned numerical schemes for the coupled problem. The first method uses the second‐order backward differentiation formula (BDF2) for implicit integration, while treating the interface terms explicitly using a second‐order extrapolation formula. The second method is the Crank–Nicolson and Leap‐Frog (CNLF) method, where the Crank–Nicolson method is used to implicitly advance the solution in time, while the coupling terms are explicitly approximated by the Leap‐Frog integration. We show that the BDF2 method is unconditionally stable and uniformly stable in time, while the CNLF method is stable under a CFL condition. Both schemes are validated using numerical simulations. Second‐order convergence in time is observed for both methods. Simulations over a longer period of time show that the errors in the solution remain bounded. Cases when the structure is poroviscoelastic and poroelastic are included in numerical examples.more » « less
-
Summary Agrobacterium tumefaciens, the causal agent of plant crown gall disease, has been widely used to genetically transform many plant species. The inter‐kingdom gene transfer capability madeAgrobacteriuman essential tool and model system to study the mechanism of exporting and integrating a segment of bacterial DNA into the plant genome. However, many biological processes such asAgrobacterium‐host recognition and interaction are still elusive. To accelerate the understanding of this important plant pathogen and further improve its capacity in plant genetic engineering, we adopted a CRISPR RNA‐guided integrase system forAgrobacteriumgenome engineering. In this work, we demonstrate thatINsertion ofTransposableElements byGuideRNA–AssistedTargEting (INTEGRATE) can efficiently generate DNA insertions to enable targeted gene knockouts. In addition, in conjunction with Cre‐loxPrecombination system, we achieved precise deletions of large DNA fragments. This work provides new genetic engineering strategies forAgrobacteriumspecies and their gene functional analyses.more » « less
-
A significant challenge in the modeling of short pulse fiber lasers is that with each successive generation there has been a dramatic increase in the amount by which the pulse varies over each round trip. Therefore, lumped rather than averaged models are required to accurately compute the periodically stationary (breather) solutions generated by these lasers. We use a spectral method to assess the linear stability of periodically stationary pulses in lumped models. This approach extends previous work by Menyuk and Wang on stationary pulses in averaged models. We first present a gradient based optimization method inspired by the work of Ambrose and Wilkening to compute periodically stationary pulses. Then, we use Floquet theory to characterize the linear stability of the pulses obtained using optimization in terms of the spectrum of the monodromy operator,M, obtained by linearization of the round trip operator about a periodically stationary pulse.more » « less
An official website of the United States government
