skip to main content


Title: A time domain approach for the exponential stability of a linearized compressible flow‐structure PDE system

This work is motivated by a longstanding interest in the long time behavior of flow‐structure interaction (FSI) PDE dynamics. We consider a linearized compressible flow structure interaction (FSI) PDE model with a view of analyzing the stability properties of both the compressible flow and plate solution components. In our earlier work, we gave an answer in the affirmative to question of uniform stability for finite energy solutions of said compressible flow‐structure system, by means of a “frequency domain” approach. However, the frequency domain method of proof in that work is not “robust” (insofar as we can see), when one wishes to study longtime behavior of solutions of compressible flow‐structure PDE models, which track the appearance of the ambient state onto the boundary interface. Nor is a frequency domain approach in this earlier work availing when one wishes to consider the dynamics, in long time, of solutions to physically relevant nonlinear versions of the compressible flow‐structure PDE system under present consideration (e.g., the Navier–Stokes nonlinearity in the PDE flow component or a nonlinearity of Berger/Von Karman type in the plate equation). Accordingly, in the present work, we operate in the time domain by way of obtaining the necessary energy estimates, which culminate in an alternative proof for the uniform stability of finite energy compressible flow‐structure solutions. Since there is a need to avoid steady states in our stability analysis, as a prerequisite result, we also show here that zero is an eigenvalue for the generators of flow‐structure systems, whether the material derivative term be absent or present. Moreover, we provide a clean characterization of the (one dimensional) zero eigenspace, with or without material derivative, under an appropriate assumption on the underlying ambient vector field.

 
more » « less
Award ID(s):
1907823
NSF-PAR ID:
10455401
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Mathematical Methods in the Applied Sciences
Volume:
44
Issue:
2
ISSN:
0170-4214
Page Range / eLocation ID:
p. 1326-1342
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this study, we consider the Oseen structure of the linearization of a compressible fluid–structure interaction (FSI) system for which the interaction interface is under the effect of material derivative term. The flow linearization is taken with respect to an arbitrary, variable ambient vector field. This process produces extra “convective derivative” and “material derivative” terms, which render the coupled system highly nondissipative. We show first a new well‐posedness result for the full incorporation of both Oseen terms, which provides a uniformly bounded semigroup via dissipativity and perturbation arguments. In addition, we analyze the long time dynamics in the sense of asymptotic (strong) stability in an invariant subspace (one‐dimensional less) of the entire state space, where the continuous semigroup isuniformly bounded. For this, we appeal to the pointwise resolvent condition introduced in Chill and Tomilov [Stability of operator semigroups: ideas and results, perspectives in operator theory Banach center publications,75(2007), Institute of Mathematics Polish Academy of Sciences, Warszawa, 71–109], which avoids an immensely technical and challenging spectral analysis and provides a short and relatively easy‐to‐follow proof.

     
    more » « less
  2. Abstract

    In this study we consider a coupled system of partial differential equations (PDE's) which describes a certain structural acoustics interaction. One component of this PDE system is a wave equation, which serves to model the interior acoustic wave medium within a given three dimensional chamber Ω. This acoustic wave equation is coupled on a boundary interface Γ0to a two dimensional system of thermoelasticity: this thermoelastic PDE is composed in part of a structural beam or plate equation, which governs the vibrations of flexible wall portion Γ0of the chamber Ω. Moreover, this elastic dynamics is coupled to a heat equation which also evolves on Γ0, and which imparts a thermal damping onto the entire structural acoustic system. As we said, the interaction between the wave and thermoelastic PDE components takes place on the boundary interface Γ0, and involves coupling boundary terms which are above the level of finite energy. We analyze the stability properties of this coupled structural acoustics PDE model, in the absence of any additive feedback dissipation on the hard walls Γ1of the boundary. Under a certain geometric assumption on Γ1, an assumption which has appeared in the literature in connection with structural acoustic flow, and which allows for the invocation of a recently derived microlocal boundary trace estimate, we show that classical solutions of this thermally damped structural acoustics PDE decay uniformly to zero, with a rational rate of decay.

     
    more » « less
  3. We develop a theory of fluid--structure interaction (FSI) between an oscillatory Newtonian fluid flow and a compliant conduit. We consider the canonical geometries of a 2D channel with a deformable top wall and an axisymmetric deformable tube. Focusing on the hydrodynamics, we employ a linear relationship between wall displacement and hydrodynamic pressure, which has been shown to be suitable for a leading-order-in-slenderness theory. The slenderness assumption also allows the use of lubrication theory, and the flow rate is related to the pressure gradient (and the tube/wall deformation) via the classical solutions for oscillatory flow in a channel and in a tube (attributed to Womersley). Then, by two-way coupling the oscillatory flow and the wall deformation via the continuity equation, a one-dimensional nonlinear partial differential equation (PDE) governing the instantaneous pressure distribution along the conduit is obtained, without \textit{a priori} assumptions on the magnitude of the oscillation frequency (\textit{i.e.}, at arbitrary Womersley number). We find that the cycle-averaged pressure (for harmonic pressure-controlled conditions) deviates from the expected steady pressure distribution, suggesting the presence of a streaming flow. An analytical perturbative solution for a weakly deformable conduit is obtained to rationalize how FSI induces such streaming. In the case of a compliant tube, the results obtained from the proposed reduced-order PDE and its perturbative solutions are validated against three-dimensional, two-way-coupled direct numerical simulations. We find good agreement between theory and simulations for a range of dimensionless parameters characterizing the oscillatory flow and the FSI, demonstrating the validity of the proposed theory of oscillatory flows in compliant conduits at arbitrary Womersley number. 
    more » « less
  4. Abstract

    This paper examines a class of involution-constrained PDEs where some part of the PDE system evolves a vector field whose curl remains zero or grows in proportion to specified source terms. Such PDEs are referred to as curl-free or curl-preserving, respectively. They arise very frequently in equations for hyperelasticity and compressible multiphase flow, in certain formulations of general relativity and in the numerical solution of Schrödinger’s equation. Experience has shown that if nothing special is done to account for the curl-preserving vector field, it can blow up in a finite amount of simulation time. In this paper, we catalogue a class of DG-like schemes for such PDEs. To retain the globally curl-free or curl-preserving constraints, the components of the vector field, as well as their higher moments, must be collocated at the edges of the mesh. They are updated using potentials collocated at the vertices of the mesh. The resulting schemes: (i) do not blow up even after very long integration times, (ii) do not need any special cleaning treatment, (iii) can operate with large explicit timesteps, (iv) do not require the solution of an elliptic system and (v) can be extended to higher orders using DG-like methods. The methods rely on a special curl-preserving reconstruction and they also rely on multidimensional upwinding. The Galerkin projection, highly crucial to the design of a DG method, is now conducted at the edges of the mesh and yields a weak form update that uses potentials obtained at the vertices of the mesh with the help of a multidimensional Riemann solver. A von Neumann stability analysis of the curl-preserving methods is conducted and the limiting CFL numbers of this entire family of methods are catalogued in this work. The stability analysis confirms that with the increasing order of accuracy, our novel curl-free methods have superlative phase accuracy while substantially reducing dissipation. We also show that PNPM-like methods, which only evolve the lower moments while reconstructing the higher moments, retain much of the excellent wave propagation characteristics of the DG-like methods while offering a much larger CFL number and lower computational complexity. The quadratic energy preservation of these methods is also shown to be excellent, especially at higher orders. The methods are also shown to be curl-preserving over long integration times.

     
    more » « less
  5. We prove the existence of a weak solution to a fluid-structure interaction (FSI) problem between the flow of an incompressible, viscous fluid modeled by the Navier-Stokes equations, and a poroviscoelastic medium modeled by the Biot equations. The two are nonlinearly coupled over an interface with mass and elastic energy, modeled by a reticular plate equation, which is transparent to fluid flow. The existence proof is constructive, consisting of two steps. First, the existence of a weak solution to a regularized problem is shown. Next, a weak-classical consistency result is obtained, showing that the weak solution to the regularized problem converges, as the regularization parameter approaches zero, to a classical solution to the original problem, when such a classical solution exists. While the assumptions in the first step only require the Biot medium to be poroelastic, the second step requires additional regularity, namely, that the Biot medium is poroviscoelastic. This is the first weak solution existence result for an FSI problem with nonlinear coupling involving a Biot model for poro(visco)elastic media. 
    more » « less