skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Was Henry David Thoreau a Good Naturalist? An Approach for Assessing Data from Historical Natural History Records
abstract Ecologists are increasingly combining historical observations made by naturalists with modern observations to detect the ecological effects of climate change. This use of historical observations raises the following question: How do we know that historical data are appropriate to use to answer current ecological questions? In the present article, we address this question for environmental philosopher Henry David Thoreau, author of Walden. Should we trust his observations? We qualitatively and quantitatively evaluate Thoreau's observations using a three-step framework: We assess the rigor, accuracy, and utility of his observations to investigate changes in plants and animals over time. We conclude that Thoreau was an accurate observer of nature and a reliable scientist. More importantly, we describe how this simple three-step approach could be used to assess the accuracy of other scientists and naturalists.  more » « less
Award ID(s):
1950447
PAR ID:
10443094
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
BioScience
Volume:
72
Issue:
10
ISSN:
0006-3568
Page Range / eLocation ID:
1018 to 1027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract As we contemplate the future of forest landscapes under changing climate conditions and land‐use demands, there is increasing value in studying historic forest conditions and how these landscapes have changed following past disturbances. Historic landscape paintings are a potential source of data on preindustrial forests with highly detailed, full‐color depictions of overstory and understory environments. They display key details about forest community composition, microhabitat features, and structural complexity from a time well before the advent of color photography. Despite these paintings' potential, their scientific applications have been impeded by questions of validity. How truly accurate are the images portrayed in these paintings? How much of an image is an artist's manipulation of a scene to best illustrate an allegory or romanticized view of nature? Following an established assessment model from historical ecology for evaluating resource validity, we demonstrate how scholarship on art history can be integrated with ecological understanding of forest landscapes to follow this model and address these questions of image veracity in 19th century American art. Further, to illustrate the potential use of these historic images in ecological studies, we present in a case study assessing microhabitat features of 10 different paintings. While this paper explores 19th century landscape art broadly, we focus our art historical review in particular on Asher Durand, a prolific and influential artist associated with the so‐called “Hudson River School” in the mid‐1800s. Durand left clear records about his perspectives on accurately depicting nature, and from a review of images and writings of Durand, we find support for the potential use of many of his paintings and sketches in historic forest ecology research. However, we also identify important caveats regarding potential ecological interpretations from these images. More broadly, because 19th century landscape paintings are not always directly transcriptive, and because regional art cultures differed in the 1800s, we cannot within this paper speak about landscape image veracity across all 19th century landscape art. However, in following established methods in historical ecology and integrating tools from art history research, we show that one can identify accurate historic landscape paintings for application in scientific studies. 
    more » « less
  2. Elmer Ottis Wooton (1865–1945) was one of the most important early botanists to work in the Southwestern United States, contributing a great deal of natural history knowledge and botanical research on the flora of New Mexico that shaped many naturalists and scientists for generations. The extensive Wooton legacy includes herbarium collections that he and his famous student Paul Carpenter Standley (1884–1963), prolific botanist and explorer, used for the first Flora of New Mexi co by Wooten and Standley 1915 , along with resources covering botany and range management strategies for the northern Chihuahuan Desert, and an extensive, yet to be digitized, historical archive of correspondence, field notes, vegetation sketches, photographs, and lantern slides, all from his travels and field work in the region. Starting in 1890, the most complete set of Wooton’s herbarium collections were deposited in the NMC herbarium at New Mexico State University (NMSU), and his archives, now stored in a Campus library, have together been underutilized, offline resources. The goals of this ongoing project are to secure, preserve, and promote Wooton’s important historical resources, by fleshing out the botanical history of the region, raising appreciation of herbarium collections within the community, and emphasizing their unique role in facilitating contemporary research aimed at addressing pressing scientific questions such as vegetation responses to global climate change. Students and the general public involved in this project are engaged through hands-on activities including cataloging, databasing and digitization of nearly 10,000 herbarium specimens and Wooton’s archives. These outputs, combined with contemporary data collection and computational biology techniques from an ecological perspective, are being used to document vegetation changes in iconic, climate-sensitive, high-elevation mountainous ecosystems present in southwestern New Mexico. In a later phase of the project, a variety of public audiences will participate through interactive online story maps and citizen science programs such as iNaturalist , Notes from Nature , and BioBlitz . Images of herbarium specimens will be shared via an online database and other relevant biodiversity portals ( Symbiota , iDigBio , JStor ) Community members reached through this project will be better-informed citizens, who may go on to become new stewards of natural history collections, with the potential to influence policies safeguarding the future of our planet’s biodiversity. More locally, the project will support the management of Organ Mountains Desert Peaks National Monument, which was established in 2014 to protect the area's human and environmental resources, and for which knowledge and data are currently limited. 
    more » « less
  3. Abstract Lineage‐specific traits determine how plants interact with their surrounding environment. Unrelated species may evolve similar phenotypic characteristics to tolerate, persist in, and invade environments with certain characteristics, resulting in some traits becoming relatively more common in certain types of habitats. Analyses of these general patterns of geographical trait distribution have led to the proposal of general principles to explain how plants diversify in space over time. Trait–environment correlation analyses quantify to what extent unrelated lineages have similar evolutionary responses to a given type of habitat. In this synthesis, I give a short historical overview on trait–environment correlation analyses, from some key observations from classic naturalists to modern approaches using trait evolution models, large phylogenies, and massive data sets of traits and distributions. I discuss some limitations of modern approaches, including the need for more realistic models, the lack of data from tropical areas, and the necessary focus on trait scoring that goes beyond macromorphology. Overcoming these limitations will allow the field to explore new questions related to trait lability and niche evolution and to better identify generalities and exceptions in how plants diversify in space over time. 
    more » « less
  4. null (Ed.)
    In 1966, James Gibson first presented his theory of the ambient optic array, and he proposed a new field of ecological optics that he hoped would advance our knowledge on this topic. This study will consider how his ideas have largely come to fruition over the past 50 years. It reviews the research on the visual perception of three-dimensional shape from shading, the effects of ambient light from surface interreflections on observers’ perceptions, the perception of the light field, and the perception of surface materials. Finally, it also considers Gibson’s impact on these developments. 
    more » « less
  5. Ecological forecasting is a tool that can be used for understanding and predicting changes in populations, communities, and ecosystems. Ecological forecasting is an emerging approach which provides an estimate of the future state of an ecological system with uncertainty, allowing society to prepare for changes in important ecosystem services. Ecological forecasters develop and update forecasts using the iterative forecasting cycle, in which they make a hypothesis of how an ecological system works; embed their hypothesis in a model; and use the model to make a forecast of future conditions. When observations become available, they can assess the accuracy of their forecast, which indicates if their hypothesis is supported or needs to be updated before the next forecast is generated. In this Macrosystems EDDIE (Environmental Data-Driven Inquiry & Exploration) module, students will apply the iterative forecasting cycle to develop an ecological forecast for a National Ecological Observation Network (NEON) site. Students will use NEON data to build an ecological model that predicts primary productivity. Using their calibrated model, they will learn about the different components of a forecast with uncertainty and compare productivity forecasts among NEON sites. The overarching goal of this module is for students to learn fundamental concepts about ecological forecasting and build a forecast for a NEON site. Students will work with an R Shiny interface to visualize data, build a model, generate a forecast with uncertainty, and then compare the forecast with observations. The A-B-C structure of this module makes it flexible and adaptable to a range of student levels and course structures. This EDI data package contains instructional materials necessary to teach the module. Intructional materials (instructor manual, introductory presentation for the module, and a presentation to introduce students and instructors to R Shiny) are provided in both pdf and editable formats within a compressed file. The module R Shiny application is available at https://macrosystemseddie.shinyapps.io/module5/. Readers are referred to the module landing page for additional information (https://serc.carleton.edu/eddie/teaching_materials/modules/module5.html) and GitHub repo (https://github.com/MacrosystemsEDDIE/module5) and/or Zenodo data package (Moore et al. 2024; DOI: 10.5281/zenodo.10733117) for the R Shiny application code. 
    more » « less