skip to main content

Title: Was Henry David Thoreau a Good Naturalist? An Approach for Assessing Data from Historical Natural History Records
abstract Ecologists are increasingly combining historical observations made by naturalists with modern observations to detect the ecological effects of climate change. This use of historical observations raises the following question: How do we know that historical data are appropriate to use to answer current ecological questions? In the present article, we address this question for environmental philosopher Henry David Thoreau, author of Walden. Should we trust his observations? We qualitatively and quantitatively evaluate Thoreau's observations using a three-step framework: We assess the rigor, accuracy, and utility of his observations to investigate changes in plants and animals over time. We conclude that Thoreau was an accurate observer of nature and a reliable scientist. More importantly, we describe how this simple three-step approach could be used to assess the accuracy of other scientists and naturalists.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
1018 to 1027
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Elmer Ottis Wooton (1865–1945) was one of the most important early botanists to work in the Southwestern United States, contributing a great deal of natural history knowledge and botanical research on the flora of New Mexico that shaped many naturalists and scientists for generations. The extensive Wooton legacy includes herbarium collections that he and his famous student Paul Carpenter Standley (1884–1963), prolific botanist and explorer, used for the first Flora of New Mexi co by Wooten and Standley 1915 , along with resources covering botany and range management strategies for the northern Chihuahuan Desert, and an extensive, yet to be digitized, historical archive of correspondence, field notes, vegetation sketches, photographs, and lantern slides, all from his travels and field work in the region. Starting in 1890, the most complete set of Wooton’s herbarium collections were deposited in the NMC herbarium at New Mexico State University (NMSU), and his archives, now stored in a Campus library, have together been underutilized, offline resources. The goals of this ongoing project are to secure, preserve, and promote Wooton’s important historical resources, by fleshing out the botanical history of the region, raising appreciation of herbarium collections within the community, and emphasizing their unique role in facilitating contemporary research aimed at addressing pressing scientific questions such as vegetation responses to global climate change. Students and the general public involved in this project are engaged through hands-on activities including cataloging, databasing and digitization of nearly 10,000 herbarium specimens and Wooton’s archives. These outputs, combined with contemporary data collection and computational biology techniques from an ecological perspective, are being used to document vegetation changes in iconic, climate-sensitive, high-elevation mountainous ecosystems present in southwestern New Mexico. In a later phase of the project, a variety of public audiences will participate through interactive online story maps and citizen science programs such as iNaturalist , Notes from Nature , and BioBlitz . Images of herbarium specimens will be shared via an online database and other relevant biodiversity portals ( Symbiota , iDigBio , JStor ) Community members reached through this project will be better-informed citizens, who may go on to become new stewards of natural history collections, with the potential to influence policies safeguarding the future of our planet’s biodiversity. More locally, the project will support the management of Organ Mountains Desert Peaks National Monument, which was established in 2014 to protect the area's human and environmental resources, and for which knowledge and data are currently limited. 
    more » « less
  2. Abstract As we contemplate the future of forest landscapes under changing climate conditions and land‐use demands, there is increasing value in studying historic forest conditions and how these landscapes have changed following past disturbances. Historic landscape paintings are a potential source of data on preindustrial forests with highly detailed, full‐color depictions of overstory and understory environments. They display key details about forest community composition, microhabitat features, and structural complexity from a time well before the advent of color photography. Despite these paintings' potential, their scientific applications have been impeded by questions of validity. How truly accurate are the images portrayed in these paintings? How much of an image is an artist's manipulation of a scene to best illustrate an allegory or romanticized view of nature? Following an established assessment model from historical ecology for evaluating resource validity, we demonstrate how scholarship on art history can be integrated with ecological understanding of forest landscapes to follow this model and address these questions of image veracity in 19th century American art. Further, to illustrate the potential use of these historic images in ecological studies, we present in a case study assessing microhabitat features of 10 different paintings. While this paper explores 19th century landscape art broadly, we focus our art historical review in particular on Asher Durand, a prolific and influential artist associated with the so‐called “Hudson River School” in the mid‐1800s. Durand left clear records about his perspectives on accurately depicting nature, and from a review of images and writings of Durand, we find support for the potential use of many of his paintings and sketches in historic forest ecology research. However, we also identify important caveats regarding potential ecological interpretations from these images. More broadly, because 19th century landscape paintings are not always directly transcriptive, and because regional art cultures differed in the 1800s, we cannot within this paper speak about landscape image veracity across all 19th century landscape art. However, in following established methods in historical ecology and integrating tools from art history research, we show that one can identify accurate historic landscape paintings for application in scientific studies. 
    more » « less
  3. Security is a critical aspect in the design, development, and testing of software systems. Due to the increasing need for security-related skills within software systems and engineering, there is a growing demand for these skills to be taught at the university level. A series of 41 security modules was developed to assess the impact of these modules on teaching critical cyber security topics to students. This paper presents the implementation and outcomes of the first set of six security modules in a Freshman level course. This set consists of five modules presented in lectures as well as a sixth module emphasizing encryption and decryption used as the semester project for the course. Each module is a collection of concepts related to cyber security. The individual cyber security concepts are presented with a general description of a security issue to avoid, sample code with the security issue written in the Java programming language, and a second version of the code with an effective solution. The set of these modules was implemented in Computer Science I during the Fall 2019 semester. Incorporating each of the concepts in these modules into lectures depends on both the topic covered and the approach to resolving the related security issue. Students were introduced to computing concepts related to both the security issue and the appropriate solution to fully grasp the overall concept. After presenting the materials to students, continual review with students is also essential. This reviewal process requires exploring use-cases for the programming mechanisms presented as solutions to the security issues discussed. In addition to the security modules presented in lectures, students were given a hands-on approach to understanding the concepts through Model-Eliciting Activities (MEAs). MEAs are open-ended, problem-solving activities in which groups of three to four students work to solve realistic complex problems in a classroom setting. The semester project related to encryption and decryption was implemented into the course as an MEA. To assess the effectiveness of incorporating security modules with the MEA project into the curriculum of Computer Science I, two sections of the course were used as a control group and a treatment group. The treatment group included the security modules in lectures and the MEA project while the control group did not. To measure the overall effectiveness of incorporating security modules with the MEA project, both the instructor’s effectiveness as well as the student’s attitudes and interest were measured. For instructors, the primary question to address was to what extent do instructors change their attitudes towards student learning and their teaching practices because of the implementation of cyber security modules through MEAs. For students, the primary question to address was how the inclusion of security modules with the MEA project improved their understanding of the course materials and their interests in computer science. After implementing security modules with the MEA project, students showed a better understanding of cyber security concepts and a greater interest in broader computer science concepts. The instructor’s beliefs about teaching, learning, and assessment shifted from teacher-centered to student-centered, during his experience with the security modules and MEA. 
    more » « less
  4. Caribou ( Rangifer tarandus ) have among the longest annual migrations of any terrestrial mammal as they move from winter ranges to spring calving grounds. Biomonitoring records indicate broad consistencies in calving geography across the last several decades, but how long have herds used particular calving grounds? Furthermore, how representative are modern patterns of calving geography to periods that pre-date recent climatic perturbations and increased anthropogenic stresses? While modern ecological datasets are not long enough to address these questions, bones from past generations of caribou lying on the tundra provide unique opportunities to study historical calving geography. This is possible because female caribou shed their antlers within days of giving birth, releasing a skeletal indicator of calving. Today, the Coastal Plain of the Arctic National Wildlife Refuge (Alaska) is a key calving ground for the Porcupine Caribou Herd (PCH). To test the duration across which caribou have used this area as a calving ground, we radiocarbon dated three highly weathered female antlers collected from tundra surfaces on the Coastal Plain. Calibrated radiocarbon dates indicate that these antlers were shed between ~1,600 and more than 3,000 calendar years ago. The antiquity of these shed antlers provides the first physical evidence of calving activity on the PCH calving grounds from previous millennia, substantiating the long ecological legacy of the Coastal Plain as a caribou calving ground. Comparisons to published lake core records also reveal that dates of two of the antlers correspond to periods with average summer temperatures that were warmer than has been typical during the last several decades of biomonitoring. This finding expands the range of climatic settings in which caribou are known to use the current PCH calving grounds and suggests that the Coastal Plain of the Arctic Refuge may remain an important caribou calving ground during at least portions of predicted future warming. Discarded skeletal materials provide opportunities to assess the historical states of living populations, including aspects of reproductive biology and migration. Particularly in high-latitude settings, these insights can extend across millennia and offer rare glimpses into the past that can inform current and future management policies. 
    more » « less
  5. The ability to identify one’s own confusion and to ask a question that resolves it is an essential metacognitive skill that supports self-regulation (Winne, 2005). Yet, while students receive substantial training in how to answer questions, little classroom time is spent training students how to ask good questions. Past research has shown that students are able to pose more high-quality questions after being instructed in a taxonomy for classifying the quality of their questions (Marbach‐Ad & Sokolove, 2000). As pilot data collection in preparation for a larger study funded through NSF-DUE, we provided engineering statics students training in writing high-quality questions to address their own confusions. The training emphasized the value of question-asking in learning and how to categorize questions using a simple taxonomy based on prior work (Harper et al., 2003). The taxonomy specifies five question levels: 1) an unspecific question, 2) a definition question, 3) a question about how to do something, 4) a why question, and 5) a question that extends knowledge to a new circumstance. At the end of each class period during a semester-long statics course, students were prompted to write and categorize a question that they believed would help them clarify their current point of greatest confusion. Through regular practice writing and categorizing such questions, we hoped to improve students' abilities to ask questions that require higher-level thinking. We collected data from 35 students in courses at two institutions. Over the course of the semester, students had the opportunity to write and categorize twenty of their own questions. After the semester, the faculty member categorized student questions using the taxonomy to assess the appropriateness of the taxonomy and whether students used it accurately. Analysis of the pilot data indicates three issues to be addressed: 1) Student compliance in writing and categorizing their questions varied. 2) Some students had difficulty correctly coding their questions using the taxonomy. 3) Some student questions could not be clearly characterized using the taxonomy, even for faculty raters. We will address each of these issues with appropriate refinements in our next round of data collection: 1) Students may have been overwhelmed with the request to write a question after each class period. In the future, we will require students to write and categorize at least one question per week, with more frequent questions encouraged. 2) To improve student use of the taxonomy in future data collection, students will receive more practice with the taxonomy when it is introduced and more feedback on their categorization of questions during the semester. 3) We are reformulating our taxonomy to accommodate questions that may straddle more than one category, such as a question about how to extend a mathematical operation to a new situation (which could be categorized as either a level 3 or 5). We are hopeful that these changes will improve accuracy and compliance, enabling us to use the intervention as a means to promote metacognitive regulation and measure changes as a result, which is the intent of the larger scope of the project. 
    more » « less