skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

The Upper Cretaceous to Paleocene Yakutat Group contains a flysch unit and a mélange unit with an unknown source terrane. The provenance of detrital zircons may be the key to understanding the age of clastic units, their source terrane, and correlative rocks along the margin. Two samples were collected from remote and difficult to access areas in Glacier Bay National Park, and these samples can be compared to samples from Harlequin Lake, Russell Fiord, and Yakutat Bay to the north. We dated detrital zircons using standard LA-ICPMS methodology. A sample of Yakutat Group flysch (YGf) from the Grand Plateau Glacier is from quartzofeldspathic turbidites adjacent to the Grand Plateau pluton. It has an MDA of ~66 Ma (Maastrichtian-Paleocene), and the grain-age distribution is dominated by a broad mid-Cretaceous population with ages from ~91 to ~114 Ma, it also has a Jurassic component at ~166. A unique attribute of this sample is that 23% of the zircons are Precambrian with a bimodal population at ~1397 Ma and ~1702 Ma. A sample of sandstone from the Yakutat Group mélange (YGm) from Lituya Bay, was collected from an assemblage of dark lithic sandstones interbedded with basalt, and dark-gray bedded chert. This sample has an MDA of ~108 (Albian), and its grain-age distribution is dominated (88%)by Jurassic dates ranging from ~156 to ~188 Ma. Both samples can be correlated to similar dated units in the area in and around Yakutat Bay. The YGf sample is correlative to the primary zircon facies common to arkosic rocks in both the Yakutat Group flysch and mélange, which we refer to as the Russell zircon facies, with an MDA range from 61-72 Ma, and distinctive Precambrian populations. The YGm sample is more complicated, but it appears to belong to the Shelter Cove zircon facies, dominated by mid-Cretaceous lithic sandstones that occur only in the mélange. The Yakutat terrane has been translated along the margin of the Cordillera, and candidate correlative rocks are to the south. We are intrigued that similar facies with similar grain-age distributions occur in the Western Mélange Belt in the North Cascades foothills in WA. We evaluate the correlation and connection between the Yakutat and the WMB and post Paleocene translation of part of this once contiguous unit.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Geological Society of America Abstracts with Programs
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Much of the southern Alaska continental margin is made up of marine sedimentary rocks and distinct terranes that have been deposited and accreted from the Cretaceous to the present (Plafker et al., 1994). The Upper Cretaceous to Eocene Chugach-Prince William (CPW) terrane is interpreted to be one of the thickest accretionary complexes in the world, and it is bounded to the north by the Border Ranges fault and Wrangellia composite terrane (Garver and Davidson, 2015). The CPW terrane is inferred to be the Mesozoic accretionary complex of southern Alaska (Amato et al., 2013), but alternate hypotheses suggest it originally formed far to the south (Cowan, 2003). The CPW consists of inboard mesomélange (the McHugh Complex & Potter Creek Assemblage) and stratigraphically younger outboard flysch facies (the Valdez & Orca groups) and associated volcanics (Plafker et al., 1989; Garver and Davidson, 2015; Amato et al., 2013). The blueschist to greenschist Potter Creek Assemblage formed in Cretaceous-Early Jurassic subduction (Amato et al., 2013). The McHugh Complex is made up of mélange and deformed conglomerates and sandstones and ages range from the Jurassic to mid Cretaceous (Amato et al., 2013). The majority of the CPW terrane (>90 %) is comprised of the outboard flysch facies of the Late Cretaceous to Eocene Valdez and Orca groups juxtaposed along the Contact fault system (Garver and Davidson, 2015, Dumoulin, 1987; Fig. 1). The CPW terrane was intruded by the 61-50 Ma Sanak-Baranof belt (SBB) near-trench plutons that are diachronous (Bradley et al., 2003; Cowan, 2003). There are two predominant hypotheses concerning the intrusion of these plutons and the amalgamation and translation of the CPW terrane. The Baranof-Leech River hypothesis suggests the CPW terrane formed to the south and was then translated along the margin (Cowan, 2003). A more northern hypothesis where CPW terrane formed in situ and the Resurrection Plate subducted underneath it (Haeussler et al., 2003). These alternate hypotheses each require a different sediment provenance for the CPW terrane outboard flysch assemblages. The goal of this study is to determine the depositional age, provenance, and original tectonic setting of the flysch facies of CPW terrane, with an emphasis on the younger Orca Group. Using maximum depositional ages (MDA) and the KS test, we delineate four distinctive zircon facies: 1) Miners Bay (~61-59 Ma, n=2244 grains); 2) Sawmill (59-55 Ma, n=1340); 3) Hawkins (55-50 Ma, n=1914); and 4) Montague (52-31 Ma, n=1144) (Fig. 2). A major stratigraphic conundrum is that the oldest Orca is age-correlative and has a similar provenance to the youngest Valdez Group at 61-60 Ma, and the location of these rocks casts doubt of models that rely on the Contact fault system as a terrane-bounding fault. 
    more » « less
  2. The age and provenance of the southern Alaskan Campanian to Paleocene Valdez Group of the Chugach terrane and its relationship with the younger outboard Paleocene to Eocene Orca Group of the Prince William terrane is poorly understood but an important component of the Cordilleran collage (Plafker et al., 1994). The Valdez and Orca Groups are both part of the Chugach-Prince William terrane (CPW), which is a thick accretionary complex that extends 2200 km along the southern Alaskan margin (Fig. 1; Cowan, 2003). The deep-water turbidites of these terranes are quartzofeldspathic and volcanic-lithic sandstones and basaltic rocks (Dumoulin, 1987; Plafker et al., 1994). The CPW is intruded by near-trench plutons of the Sanak-Baranof belt (Davidson and Garver, 2017) and are believed to be related to a slab window that formed during subduction of Kula-Farallon or Kula- Resurrection spreading ridges (Marshak and Karig, 1977; Delong et al., 1978; Moore et al., 1983; Kusky et al., 1997a; Bradley et al., 2003; Haeussler et al., 2003). There are two hypotheses for the formation of the CPW along the North American Cordilleran margin: 1) either the CPW terrane formed in situ by subduction of the Resurrection plate (Haeussler et al. 2003); or 2) the rocks formed in the Pacific Northwest or California and were transported at least 2000 km along coastwise strike-slip fault systems (Cowan, 2003; Garver and Davidson, 2015). This study is an investigation into the age and provenance of the Valdez Group and its relationship with the Orca Group in the central Chugach Mountains using detrital zircon U-Pb dates. New detrital zircon U-Pb dates and their grain-age distributions from the Valdez and Orca Group turbidites are combined with dates from Kochelek et al. (2011), Amato et al. (2013), and Davidson and Garver (2017) and then synthesized to understand the difference in age between the units and provenance. New and existing U-Pb dates indicate maximum depositional ages (MDA) of the Valdez Group are concentrated in three groups: 84-78 Ma, 74-65 Ma, and 62-60 Ma. The youngest group of MDAs are age-correlative with the Orca Group but were collected from rocks in areas mapped as Valdez Group, indicating that either Orca Group rocks occur in the Valdez Group or the youngest Valdez Group rocks are stratigraphically equivalent to those of the oldest Orca Group. If the latter, the Valdez Group is not Campanian to Maastrichtian in age as has been traditionally viewed (Plafker et al., 1994) but is Upper Cretaceous to Paleocene and in part correlative to the lowest part of the Orca Group. 
    more » « less
  3. The thick flysch facies of the Cretaceous to Eocene Chugach-Prince William terrane (CPW) represents a thick accretionary complex that extends approximately 2200 km across southern Alaska, and in the central area is comprised mainly of the Valdez Group and the Orca Group (Fig. 1) (Garver and Davidson, 2015; Davidson and Garver, 2017). The Valdez Group is traditionally viewed as a Campanian to Maastrichtian turbidite deposit with mafic volcanic rocks that have experienced lower greenschist facies metamorphism (Dusel-Bacon, 1991; Gasser et al., 2012). The Orca Group is Paleocene to Eocene turbidite and volcanic deposit that, in most places, has undergone prehnitepumpellyite facies metamorphism (Dusel-Bacon, 1991; Wilson et al., 2012). The relationship between the Valdez Group and the Orca Group is poorly understood (Moffit, 1954). A common hypothesis suggested long ago is that they are stratigraphically related and are a continuous sequence (Capps and Johnson, 1915). Given recent zircon dating, the Valdez Group appears to have maximum depositional ages (MDA) of 75-65 Ma and the deposition of the Orca Group is between 60-50 Ma (Davidson and Garver, 2017). In this case, deformation of the Valdez Group may have occurred 65-60 Ma, just before the deposition of the oldest Orca Group turbidites began. Thus, the youngest strata of the Valdez Group must be older than the oldest strata of the Orca Group. An alternative hypothesis is that the Orca Group formed in a different location and was translated to its current position along strike slip faults after the deformation of the Valdez Group (cf. Plafker et al., 1994). This idea would mean that the ages of the two groups may overlap in age, and the time of juxtaposition of the Orca Group to the Valdez Group is unknown but important. After the deposition of the bulk of the Orca Group was completed, the CPW experienced plutonism by the near-trench Sanak- Baranof Belt (SBB) and the Eshmay plutons (Cowan, 2003; Davidson and Garver, 2017). If a pluton crosscuts two terranes then the age of that pluton is the minimum age that the two terranes were juxtaposed (Coney et al., 1980). The SBB plutons intruded the CPW from 63-47 Ma, with a distinct age progression from 63 Ma to the west to 50-47 Ma to the east (Davidson and Garver, 2017). In Prince William Sound the CPW terrane is also intruded by the Eshmay Suite Plutons (ESP) around 37-41 Ma (Fig. 1) (Johnson, 2012; Davidson and Garver, 2012; Garcia et al., 2019). The Eshamy suite plutons could be explained by high heat flow that melted Orca Group sediments and these melts then mixed in with mantlederived basalts (Johnson, 2012). The ESP stitch the two terranes, as they occur on both sides of the Contact Fault System (Fig. 1) (Davidson and Garver, 2017). A key link between the Orca and Valdez Groups may be conglomerates that occur in the Orca Group. There are five main localities of conglomerates in PWS, and some of the most significant exposures are in eastern and northern PWS. These conglomerates were described by Grant and Higgins (1910) as being near the bottom of the Orca Group stratigraphy, specifically at the basal unconformity. However, Capps and Johnson (1915) described the conglomerates as being at the top of the Orca Group, occurring after and interleaved with basaltic volcanic rocks (cf. Tysdal and Case, 1979). If the Valdez Group is the source of the Orca Group conglomerate clasts, then the two terranes were adjacent at a time earlier than previously known (38-39 Ma) (Davidson and Garver, 2017). Capps and Johnson (1915) proposed that the matrix of the conglomerates and the majority of the clasts were derived from the Valdez Group. They also suggest that a few clasts could be derived from the greenstones of the Orca Group. The provenance of the Orca Group conglomerates is important in our understanding of the relationship between the Valdez and Orca Groups as well as our overall understanding of the Cordilleran tectonics. This study will focus on understanding the Valdez Group and the Orca Group through the study of detrital zircons from sandstone clasts from the Orca Group Conglomerates and the host strata to those conglomerates. 
    more » « less
  4. Cooling ages of tectonic blocks between the Yakutat microplate and the Fairweather transform boundary fault reveal exhumation due to strike-slip faulting and subsequent collision into this tectonic corner. The Yakutat and Boundary faults are splay faults that define tectonic panels with bounding faults that have evidence of both reverse and strike-slip motion, and they are parallel to the northern end of the Fairweather fault. Uplift and exhumation simultaneous with strike-slip motion have been significant since the late Miocene. The blocks are part of an actively deforming tectonic corner, as indicated by the ~14–1.5 m of coseismic uplift from the M 8.1 Yakutat Bay earthquake of 1899 and 4 m of strike-slip motion in the M 7.9 Lituya Bay earthquake in 1958 along the Fairweather fault. New apatite (U-Th-Sm)/He (AHe) and zircon (U-Th)/He (ZHe) data reveal that the Boundary block and the Russell Fiord block have different cooling histories since the Miocene, and thus the Boundary fault that separates them is an important tectonic boundary. Upper Cretaceous to Paleocene flysch of the Russell Fiord block experienced a thermal event at 50 Ma, then a relatively long period of burial until the late Miocene when initial exhumation resulted in ZHe ages between 7 and 3 Ma, and then very rapid exhumation in the last 1–1.5 m.y. Exhumation of the Russell Fiord block was accommodated by reverse faulting along the Yakutat fault and the newly proposed Calahonda fault, which is parallel to the Yakutat fault. The Eocene schist of Nunatak Fiord and 54–53 Ma Mount Stamy and Mount Draper granites in the Boundary block have AHe and ZHe cooling ages that indicate distinct and very rapid cooling between ca. 5 Ma and ca. 2 Ma. Rocks of the Chugach Metamorphic Complex to the northeast of the Fairweather fault and in the fault zone were brought up from 10–12 km at extremely high rates (>5 km/m.y.) since ca. 3 Ma, which implies a significant component of dip-slip motion along the Fairweather fault. The adjacent rocks of the Boundary block were exhumed with similar rates and from similar depths during the early Pliocene, when they may have been located 220–250 km farther south near Baranof Island. The profound and significant exhumation of the three tectonic blocks in the last 5 m.y. has probably been driven by uplift and erosional exhumation due to contraction as rocks collide into this tectonic corner. The documented spatial and temporal pattern of exhumation is in agreement with the southward shift of focused exhumation at the St. Elias syntaxial corner and the southeast propagation of the fold-and thrust belt. 
    more » « less
  5. The Alaska Range suture zone exposes Cretaceous to Quaternary marine and nonmarine sedimentary and volcanic rocks sandwiched between oceanic rocks of the accreted Wrangellia composite terrane to the south and older continental terranes to the north. New U-Pb zircon ages, 40Ar/39Ar, ZHe, and AFT cooling ages, geochemical compositions, and geological field observations from these rocks provide improved constraints on the timing of Cretaceous to Miocene magmatism, sedimentation, and deformation within the collisional suture zone. Our results bear on the unclear displacement history of the seismically active Denali fault, which bisects the suture zone. Newly identified tuffs north of the Denali fault in sedimentary strata of the Cantwell Formation yield ca. 72 to ca. 68 Ma U-Pb zircon ages. Lavas sampled south of the Denali fault yield ca. 69 Ma 40Ar/39Ar ages and geochemical compositions typical of arc assemblages, ranging from basalt-andesite-trachyte, relatively high-K, and high concentrations of incompatible elements attributed to slab contribution (e.g., high Cs, Ba, and Th). The Late Cretaceous lavas and bentonites, together with regionally extensive coeval calc-alkaline plutons, record arc magmatism during contractional deformation and metamorphism within the suture zone. Latest Cretaceous volcanic and sedimentary strata are locally overlain by Eocene Teklanika Formation volcanic rocks with geochemical compositions transitional between arc and intraplate affinity. New detrital-zircon data from the modern Teklanika River indicate peak Teklanika volcanism at ca. 57 Ma, which is also reflected in zircon Pb loss in Cantwell Formation bentonites. Teklanika Formation volcanism may reflect hypothesized slab break-off and a Paleocene–Eocene period of a transform margin configuration. Mafic dike swarms were emplaced along the Denali fault from ca. 38 to ca. 25 Ma based on new 40Ar/39Ar ages. Diking along the Denali fault may have been localized by strike-slip extension following a change in direction of the subducting oceanic plate beneath southern Alaska from N-NE to NW at ca. 46–40 Ma. Diking represents the last recorded episode of significant magmatism in the central and eastern Alaska Range, including along the Denali fault. Two tectonic models may explain emplacement of more primitive and less extensive Eocene–Oligocene magmas: delamination of the Late Cretaceous–Paleocene arc root and/or thickened suture zone lithosphere, or a slab window created during possible Paleocene slab break-off. Fluvial strata exposed just south of the Denali fault in the central Alaska Range record synorogenic sedimentation coeval with diking and inferred strike-slip displacement. Deposition occurred ca. 29 Ma based on palynomorphs and the youngest detrital zircons. U-Pb detrital-zircon geochronology and clast compositional data indicate the fluvial strata were derived from sedimentary and igneous bedrock presently exposed within the Alaska Range, including Cretaceous sources presently exposed on the opposite (north) side of the fault. The provenance data may indicate ~150 km or more of dextral offset of the ca. 29 Ma strata from inferred sediment sources, but different amounts of slip are feasible. Together, the dike swarms and fluvial strata are interpreted to record Oligocene strike-slip movement along the Denali fault system, coeval with strike-slip basin development along other segments of the fault. Diking and sedimentation occurred just prior to the onset of rapid and persistent exhumation ca. 25 Ma across the Alaska Range. This phase of reactivation of the suture zone is interpreted to reflect the translation along and convergence of southern Alaska across the Denali fault driven by highly coupled flat-slab subduction of the Yakutat microplate, which continues to accrete to the southern margin of Alaska. Furthermore, a change in Pacific plate direction and velocity at ca. 25 Ma created a more convergent regime along the apex of the Denali fault curve, likely contributing to the shutting off of near-fault extension- facilitated arc magmatism along this section of the fault system and increased exhumation rates. 
    more » « less