In the present work, we explored the dynamics of single kinks, kink–anti-kink pairs and bound states in the prototypical fractional Klein–Gordon example of the sine-Gordon equation. In particular, we modified the order β of the temporal derivative to that of a Caputo fractional type and found that, for 1<β<2, this imposes a dissipative dynamical behavior on the coherent structures. We also examined the variation of a fractional Riesz order α on the spatial derivative. Here, depending on whether this order was below or above the harmonic value α=2, we found, respectively, monotonically attracting kinks, or non-monotonic and potentially attracting or repelling kinks, with a saddle equilibrium separating the two. Finally, we also explored the interplay of the two derivatives, when both Caputo temporal and Riesz spatial derivatives are involved.
more »
« less
Interactions and Dynamics of One-Dimensional Droplets, Bubbles and Kinks
We explore the dynamics and interactions of multiple bright droplets and bubbles, as well as the interactions of kinks with droplets and with antikinks, in the extended one-dimensional Gross–Pitaevskii model including the Lee–Huang–Yang correction. Existence regions are identified for the one-dimensional droplets and bubbles in terms of their chemical potential, verifying the stability of the droplets and exposing the instability of the bubbles. The limiting case of the droplet family is a stable kink. The interactions between droplets demonstrate in-phase (out-of-phase) attraction (repulsion), with the so-called Manton’s method explicating the observed dynamical response, and mixed behavior for intermediate values of the phase shift. Droplets bearing different chemical potentials experience mass-exchange phenomena. Individual bubbles exhibit core expansion and mutual attraction prior to their destabilization. Droplets interacting with kinks are absorbed by them, a process accompanied by the emission of dispersive shock waves and gray solitons. Kink–antikink interactions are repulsive, generating counter-propagating shock waves. Our findings reveal dynamical features of droplets and kinks that can be detected in current experiments.
more »
« less
- PAR ID:
- 10443201
- Date Published:
- Journal Name:
- Condensed Matter
- Volume:
- 8
- Issue:
- 3
- ISSN:
- 2410-3896
- Page Range / eLocation ID:
- 67
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We consider the existence and spectral stability of static multi-kink structures in the discrete sine-Gordon equation, as a representative example of the family of discrete Klein–Gordon models. The multi-kinks are constructed using Lin’s method from an alternating sequence of well-separated kink and antikink solutions. We then locate the point spectrum associated with these multi-kink solutions by reducing the spectral problem to a matrix equation. For an m -structure multi-kink, there will be m eigenvalues in the point spectrum near each eigenvalue of the primary kink, and, as long as the spectrum of the primary kink is imaginary, the spectrum of the multi-kink will be as well. We obtain analytic expressions for the eigenvalues of a multi-kink in terms of the eigenvalues and corresponding eigenfunctions of the primary kink, and these are in very good agreement with numerical results. We also perform numerical time-stepping experiments on perturbations of multi-kinks, and the outcomes of these simulations are interpreted using the spectral results.more » « less
-
null (Ed.)Recent experiments show that quasi-one-dimensional lattices of self-propelled droplets exhibit collective instabilities in the form of out-of-phase oscillations and solitary-like waves. This hydrodynamic lattice is driven by the external forcing of a vertically vibrating fluid bath, which invokes a field of subcritical Faraday waves on the bath surface, mediating the spatio-temporal droplet coupling. By modelling the droplet lattice as a memory-endowed system with spatially non-local coupling, we herein rationalize the form and onset of instability in this new class of dynamical oscillator. We identify the memory-driven instability of the lattice as a function of the number of droplets, and determine equispaced lattice configurations precluded by geometrical constraints. Each memory-driven instability is then classified as either a super- or subcritical Hopf bifurcation via a systematic weakly nonlinear analysis, rationalizing experimental observations. We further discover a previously unreported symmetry-breaking instability, manifest as an oscillatory–rotary motion of the lattice. Numerical simulations support our findings and prompt further investigations of this nonlinear dynamical system.more » « less
-
Three‐Dimensional Measurements of Air Entrainment and Enhanced Bubble Transport During Wave BreakingAbstract We experimentally investigate the depth distributions and dynamics of air bubbles entrained by breaking waves in a wind‐wave channel over a range of breaking wave conditions using high‐resolution imaging and three‐dimensional bubble tracking. Below the wave troughs, the bubble concentration decays exponentially with depth. Patches of entrained bubbles are identified for each breaking wave, and statistics describing the horizontal and vertical transport are presented. Aggregating our results, we find a stream‐wise transport faster than the associated Stokes drift and modified Stokes drift for buoyant particles, which is an effect not accounted for in current models of bubble transport. This enhancement in transport is attributed to the flow field induced by the breaking waves and is relevant for the transport of bubbles, oil droplets, and microplastics at the ocean surface.more » « less
-
Recent studies have demonstrated that higher than two-body bath-impurity correlations are not important for quantitatively describing the ground state of the Bose polaron. Motivated by the above, we employ the so-called Gross Ansatz (GA) approach to unravel the stationary and dynamical properties of the homogeneous one-dimensional Bose-polaron for different impurity momenta and bath-impurity couplings. We explicate that the character of the equilibrium state crossovers from the quasi-particle Bose polaron regime to the collective-excitation stationary dark-bright soliton for varying impurity momentum and interactions. Following an interspecies interaction quench the temporal orthogonality catastrophe is identified, provided that bath-impurity interactions are sufficiently stronger than the intraspecies bath ones, thus generalizing the results of the confined case. This catastrophe originates from the formation of dispersive shock wave structures associated with the zero-range character of the bath-impurity potential. For initially moving impurities, a momentum transfer process from the impurity to the dispersive shock waves via the exerted drag force is demonstrated, resulting in a final polaronic state with reduced velocity. Our results clearly demonstrate the crucial role of non-linear excitations for determining the behavior of the one-dimensional Bose polaron.more » « less
An official website of the United States government

