skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: A space–time quasi-Trefftz DG method for the wave equation with piecewise-smooth coefficients
Trefftz methods are high-order Galerkin schemes in which all discrete functions are elementwise solution of the PDE to be approximated. They are viable only when the PDE is linear and its coefficients are piecewise-constant. We introduce a “quasi-Trefftz” discontinuous Galerkin (DG) method for the discretisation of the acoustic wave equation with piecewise-smooth material parameters: the discrete functions are elementwise approximate PDE solutions. We show that the new discretisation enjoys the same excellent approximation properties as the classical Trefftz one, and prove stability and high-order convergence of the DG scheme. We introduce polynomial basis functions for the new discrete spaces and describe a simple algorithm to compute them. The technique we propose is inspired by the generalised plane waves previously developed for time-harmonic problems with variable coefficients; it turns out that in the case of the time-domain wave equation under consideration the quasi-Trefftz approach allows for polynomial basis functions.  more » « less
Award ID(s):
2105487
PAR ID:
10443206
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Mathematics of Computation
Volume:
92
Issue:
341
ISSN:
0025-5718
Page Range / eLocation ID:
1211 to 1249
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This article presents high order accurate discontinuous Galerkin (DG) methods for wave problems on moving curved meshes with general choices of basis and quadrature. The proposed method adopts an arbitrary Lagrangian–Eulerian formulation to map the wave equation from a time‐dependent moving physical domain onto a fixed reference domain. For moving curved meshes, weighted mass matrices must be assembled and inverted at each time step when using explicit time‐stepping methods. We avoid this step by utilizing an easily invertible weight‐adjusted approximation. The resulting semi‐discrete weight‐adjusted DG scheme is provably energy stable up to a term that (for a fixed time interval) converges to zero with the same rate as the optimal error estimate. Numerical experiments using both polynomial and B‐spline bases verify the high order accuracy and energy stability of proposed methods. 
    more » « less
  2. Abstract We propose a stochastic Galerkin method using sparse wavelet bases for the Boltzmann equation with multi-dimensional random inputs. Themethod uses locally supported piecewise polynomials as an orthonormal basis of the random space. By a sparse approach, only a moderate number of basis functions is required to achieve good accuracy in multi-dimensional random spaces. We discover a sparse structure of a set of basis-related coefficients, which allows us to accelerate the computation of the collision operator. Regularity of the solution of the Boltzmann equation in the random space and an accuracy result of the stochastic Galerkin method are proved in multi-dimensional cases. The efficiency of the method is illustrated by numerical examples with uncertainties from the initial data, boundary data and collision kernel. 
    more » « less
  3. null (Ed.)
    In this paper, we study the central discontinuous Galerkin (DG) method on overlapping meshes for second order wave equations. We consider the first order hyperbolic system, which is equivalent to the second order scalar equation, and construct the corresponding central DG scheme. We then provide the stability analysis and the optimal error estimates for the proposed central DG scheme for one- and multi-dimensional cases with piecewise P k elements. The optimal error estimates are valid for uniform Cartesian meshes and polynomials of arbitrary degree k  ≥ 0. In particular, we adopt the techniques in Liu et al . ( SIAM J. Numer. Anal. 56 (2018) 520–541; ESAIM: M2AN 54 (2020) 705–726) and obtain the local projection that is crucial in deriving the optimal order of convergence. The construction of the projection here is more challenging since the unknowns are highly coupled in the proposed scheme. Dispersion analysis is performed on the proposed scheme for one dimensional problems, indicating that the numerical solution with P 1 elements reaches its minimum with a suitable parameter in the dissipation term. Several numerical examples including accuracy tests and long time simulation are presented to validate the theoretical results. 
    more » « less
  4. null (Ed.)
    In this paper, we construct, analyze, and numerically validate conservative discontinuous Galerkin (DG) schemes for approximating the Schr\"{o}dinger-Poisson equation. The proposed schemes all satisfy both mass and energy conservation. For the semi-discrete DG scheme optimal $L^2$ error estimates are obtained. Efficient iterative solvers are also constructed to solve the second order implicit time discretization. A number of numerical tests are presented to demonstrate the method’s accuracy and robustness, confirming that both mass and energy are well preserved over long time simulations. 
    more » « less
  5. This paper is concerned with the PDE (partial differential equation) and numerical analysis of a modified one-dimensional intravascular stent model. It is proved that the modified model has a unique weak solution by using the Galerkin method combined with a compactness argument. A semi-discrete finite-element method and a fully discrete scheme using the Euler time-stepping have been formulated for the PDE model. Optimal order error estimates in the energy norm are proved for both schemes. Numerical results are presented, along with comparisons between different decoupling strategies and time-stepping schemes. Lastly, extensions of the model and its PDE and numerical analysis results to the two-dimensional case are also briefly discussed. 
    more » « less