ABSTRACT Sustainable alternatives to petroleum‐based plastics are needed urgently, but biodegradable materials from renewable sources often suffer from inadequate mechanical properties. Here, we demonstrate a bio‐inspired strategy to enhance soy protein isolate (SPI) nanocomposites through surface modification of cellulose nanocrystal (CNC) reinforcing filler particles with a polydopamine (polyDOPA) coating via dopamine polymerization under alkaline conditions. This modification creates multifunctional interfaces at filler surfaces that enhance nanocomposite mechanical properties likely by simultaneously altering filler dispersion and filler–matrix interactions. PolyDOPA‐modified CNCs increase the tensile strength and elastic modulus of SPI films (plasticized with 50% glycerol) by more than threefold compared to unreinforced controls. Transmission electron microscopy, spectroscopic techniques, and thermal analysis reveal that polyDOPA coatings influenced nanocomposite structure across multiple length scales, tripling the effective diameter of the CNC inclusions, reducing the tendency of CNC nanocrystals to aggregate, and increasing the glass transition temperature. The increase in glass transition temperature suggests reduced SPI molecular mobility, which, along with micromechanical modeling, indicates the potential for improved interfacial interactions. Results reveal how polyDOPA‐modified CNCs influence the interphase behavior and filler dispersion of SPI‐glycerol nanocomposites, providing a pathway to further improve their performance for various applications, including packaging, membranes, and coatings. 
                        more » 
                        « less   
                    
                            
                            Leveraging peptide–cellulose interactions to tailor the hierarchy and mechanics of peptide–polymer hybrids
                        
                    
    
            Inspired by spider silk's hierarchical diversity, we leveraged peptide motifs with the capability to tune structural arrangement for controlling the mechanical properties of a conventional polymer framework. The addition of nanofiller with hydrogen bonding sites was used as another pathway towards hierarchical tuning via matrix–filler interactions. Specifically, peptide–polyurea hybrids (PPUs) were combined with cellulose nanocrystals (CNCs) to develop mechanically-tunable nanocomposites via tailored matrix–filler interactions (or peptide–cellulose interactions). In this material platform, we explored the effect of these matrix–filler interactions on the secondary structure, hierarchical ordering, and mechanical properties of the peptide hybrid nanocomposites. Interactions between the peptide matrix and CNCs occur in all of the PPU/CNC nanocomposites, preventing α-helical ordering, but promoting inter-molecular hydrogen bonded β-sheet formation. Depending on peptide and CNC content, the Young's modulus varies from 10 to 150 MPa. Unlike conventional cellulose-reinforced polymer nanocomposites, the mechanical properties of these composite materials are dictated by a balance of CNC reinforcement, peptidic ordering, and microphase-separated morphology. This research highlights that leveraging peptide–cellulose interactions is a strategy to create materials with targeted mechanical properties for a specific application using a limited selection of building blocks. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1844463
- PAR ID:
- 10443210
- Date Published:
- Journal Name:
- Journal of Materials Chemistry B
- Volume:
- 11
- Issue:
- 24
- ISSN:
- 2050-750X
- Page Range / eLocation ID:
- 5594 to 5606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Photo-induced thiol-ene crosslinking of allyl-functionalized cellulose nanocrystal (CNC)/polymer nanocomposites allows access to films that mimic the water-enhanced mechanical gradient characteristics of the squid beak. These films are prepared by mixing the functionalized CNCs and polymer in a solvent before solution casting and drying. The photocrosslinking agents are then imbibed into the film before UV exposure. Reported herein are studies aimed at better understanding the effect of the film preparation procedure, film thickness and the conditions under which the UV treatment is carried out. It was found that when the film is heated at a temperature higher than its glass transition temperature (Tg) during the UV irradiation step there is a greater enhancement in the mechanical properties of the films, presumably on account of more efficient crosslinking between the CNC fillers. Moreover, composite films that were compression molded (at 90°C) before the imbibing step displayed lower mechanical properties compared to the as-cast films, which is attributed to phase separation of the CNC fillers and polymer matrix during this additional processing step. Finally, the film thickness was also found to be a critical factor that affects the degree of crosslinking. For example, thinner films (50 µm) displayed a higher wet modulus ca. 130 MPa compared to ca. 80 MPa for the thicker films (150 µm). Understanding the processing conditions allows access to a larger range of mechanical properties which is important for the design of new bio-inspired mechanical gradient nanocomposites.more » « less
- 
            Abstract Dispersing carbon nanomaterials in solvents is effective in transferring their significant mechanical and functional properties to polymers and nanocomposites. However, poor dispersion of carbon nanomaterials impedes exploiting their full potential in nanocomposites. Cellulose nanocrystals (CNCs) are promising for dispersing and stabilizing pristine carbon nanotubes (pCNTs) and graphene nanoplatelets (pGnP) in protic media without functionalization. Here, the underlying mechanisms at the molecular level are investigated between CNC and pCNT/pGnP that stabilize their dispersion in polar solvents. Based on the spectroscopy and microscopy characterization of CNCpCNT/pGnP and density functional theory (DFT) calculations, an additional intermolecular mechanism is proposed between CNC and pCNT/pGnP that forms carbonoxygen covalent bonds between hydroxyl end groups of CNCs and the defected sites of pCNTs/pGnPs preventing re‐agglomeration in polar solvents. This work's findings indicate that the CNC‐assisted process enables new capabilities in harnessing nanostructures at the molecular level and tailoring the performance of nanocomposites at higher length scales.more » « less
- 
            Abstract Polymer nanocomposites are made by combining a nanoscale filler with a polymer matrix, where polymer‐particle interactions can enhance matrix properties and introduce behaviors distinct from either component. Manipulating particle organization within a composite potentially allows for better control over polymer‐particle interactions, and the formation of ordered arrays can introduce new, emergent properties not observed in random composites. However, self‐assembly of ordered particle arrays typically requires weak interparticle interactions to prevent kinetic traps, making these assemblies incompatible with most conventional processing techniques. As a result, more fundamental investigations are needed into methods to provide additional stability to these lattices without disrupting their internal organization. The authors show that the addition of free polymer chains to the assembly solution is a simple means to increase the stability of nanoparticle superlattices against thermal dissociation. By adding high concentrations (>50 mg mL−1) of free polymer to nanoparticle superlattices, it is possible to significantly elevate their thermal stability without adversely affecting ordering. Moreover, polymer topology, molecular weight, and concentration can also be used as independent design handles to tune this behavior. Collectively, this work allows for a wider range of processing conditions for generating future nanocomposites with complete control over particle organization within the material.more » « less
- 
            Abstract Poly(lactic acid) (PLA) is a commercially available bio‐based polymer that is a potential alternative to many commodity petrochemical‐based polymers. However, PLA's thermomechanical properties limit its use in many applications. Incorporating polymer‐grafted cellulose nanocrystals (CNCs) is one potential route to improving these mechanical properties. One key challenge in using these polymer‐grafted nanoparticles is to understand which variables associated with polymer grafting are most important for improving composite properties. In this work, poly(ethylene glycol)‐grafted CNCs are used to study the effects of polymer grafting density and molecular weight on the properties of PLA composites. All CNC nanofillers are found to reinforce PLA above the glass transition temperature, but non‐grafted CNCs and CNCs grafted with short PEG chains (<2 kg mol−1) are found to cause significant embrittlement, generally resulting in less than 3% elongation‐at‐break. By grafting higher molecular weight PEG (10 kg mol−1) onto the CNCs at a grafting density where the polymer chains are predicted to be in the semi‐dilute polymer brush conformation (~0.1 chains nm−2), embrittlement can be avoided.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    