- Award ID(s):
- 2110603
- NSF-PAR ID:
- 10443221
- Date Published:
- Journal Name:
- Nanomaterials
- Volume:
- 13
- Issue:
- 5
- ISSN:
- 2079-4991
- Page Range / eLocation ID:
- 880
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
It is a challenge to selectively hydrogenate 4-nitrostyrene to 4-nitroethylbenzene, due to the similar energy barrier of hydrogenation of the nitro and vinyl groups. Herein, we demonstrate that such selective hydrogenation can be achieved by Pd@Ru core–shell nanocubes that are prepared by epitaxial growth of a face-centered cubic Ru shell on Pd cubes. The core–shell structure of Pd@Ru nanocubes is confirmed by transmission electron microscopy, X-ray diffraction spectroscopy, and elemental mapping measurements. It is found that the electronic structure and hence the catalytic activity of the Pd@Ru nanocubes can be readily modulated by the Ru shell thickness. This is manifested in electrochemical CO stripping measurements where a decrease of CO adsorption energy is observed on Pd@Ru nanocubes with the increase of the Ru shell thickness. Results from this study suggest that deliberate structural engineering can be exploited to prepare bimetallic core–shell nanostructures for highly active and selective hydrogenation of organic molecules with multifunctional moieties.more » « less
-
In this study, we present an investigation aimed at characterizing and understanding the synergistic interactions in encapsulated catalytic structures between the metal core ( i.e. , Pd) and oxide shell ( i.e. , TiO 2 , ZrO 2 , and CeO 2 ). Encapsulated catalysts were synthesized using a two-step procedure involving the initial colloidal synthesis of Pd nanoparticles (NPs) capped by various ligands and subsequent sol–gel encapsulation of the NPs with porous MO 2 (M = Ti, Zr, Ce) shells. The encapsulated catalytic systems displayed higher activity than the Pd/MO 2 supported structures due to unique physicochemical properties at the Pd–MO 2 interface. Pd@ZrO 2 exhibited the highest catalytic activity for CO oxidation. Results also suggested that the active sites in Pd encapsulated by an amorphous ZrO 2 shell structure were significantly more active than the crystalline oxide encapsulated structures at low temperatures. Furthermore, CO DRIFTS studies showed that Pd redispersion occurred under CO oxidation reaction conditions and as a function of the oxide shell composition, being observed in Pd@TiO 2 systems only, with potential formation of smaller NPs and oxide-supported Pd clusters after reaction. This investigation demonstrated that metal oxide composition and (in some cases) crystallinity play major roles in catalyst activity for encapsulated catalytic systems.more » « less
-
Shell printing is an advantageous binder jetting technique that prints only a thin shell of the intended object to enclose the loose powder in the core. In this study, powder packing in the shell and core was investigated for the first time. By examining the density and microstructure of the printed samples, powder packing was found to be different between the shell and core. In addition, the powder particle size and layer thickness were found to affect the powder packing in the shell and core differently. At a 200 µm layer thickness, for the 10 µm and 20 µm powders, the core was less dense than the shell and had a layered microstructure. At a 200 µm layer thickness, for the 70 µm powder, the core was denser and had a homogeneous microstructure. For the 20 µm powder, by reducing the layer thickness from 200 µm to 70 µm, the core became denser than the shell, and the microstructure of the core became homogeneous. The different results could be attributed to the different scenarios of particle rearrangement between the shell and core for powders of different particle sizes and at different layer thicknesses. Considering that the core was denser and more homogeneous than the shell when the proper layer thickness and powder particle size were selected, shell printing could be a promising method to tailor density and reduce anisotropy.
-
The mechanical properties of core–shell bimetallic composite nanowires, forming the bases of nanoporous metallic foams, have been investigated and compared with pure metal nanowires using molecular dynamics simulations. In the current study, pure copper and gold nanowires under uniaxial loading were tested at room temperature and compared to composite nanowires of the same materials (core) with a nickel coating (shell). The core radius ranged from 1 to 15 nm, and the shell thickness ranged from 0.1 to 5 nm. The tension strain was performed along the [001] direction under room temperature. Both coherent and semi-coherent composite nanowires were studied, and the effect of coating layer thickness was investigated. The strengthening mechanisms of the core–shell structures due to the presence of the two different types of interfaces were investigated for various nickel thicknesses. The atomistic simulation results revealed that the addition of the nickel shell strengthens the structure when the layer thickness exceeds a critical value.more » « less
-
Abstract A goal in the field of nanoscale optics is the fabrication of nanostructures with strong directional light scattering at visible frequencies. Here, the synthesis of Mie‐resonant core–shell particles with overlapping electric and magnetic dipole resonances in the visible spectrum is demonstrated. The core consists of silicon surrounded by a lower index silicon oxynitride (SiO
x Ny ) shell of an adjustable thickness. Optical spectroscopies coupled to Mie theory calculations give the first experimental evidence that the relative position and intensity of the magnetic and electric dipole resonances are tuned by changing the core–shell architecture. Specifically, coating a high‐index particle with a low‐index shell coalesces the dipoles, while maintaining a high scattering efficiency, thus generating broadband forward scattering. This synthetic strategy opens a route toward metamaterial fabrication with unprecedented control over visible light manipulation.