In this paper we develop a state transition function for partially observable multi-agent epistemic domains and implement it using Answer Set Programming (ASP). The transition function computes the next state upon an occurrence of a single action. Thus it can be used as a module in epistemic planners. Our transition function incorporates ontic, sensing and announcement actions and allows for arbitrary nested belief formulae and general common knowledge. A novel feature of our model is that upon an action occurrence, an observing agent corrects his (possibly wrong) initial beliefs about action precondition and his observability. By examples, we show that this step is necessary for robust state transition. We establish some properties of our state transition function regarding its soundness in updating beliefs of agents consistent with their observability.
more »
« less
Planning in Multi-Agent Domains with Untruthful Announcements
Earlier epistemic planning systems for multi-agent domains generate plans that contain various types of actions such as ontic, sensing, or announcement actions. However, none of these systems consider untruthful announcements, i.e., none can generate plans that contain a lying or a misleading announcement. In this paper, we present a novel epistemic planner, called EFP3.0, for multi-agent domains with untruthful announcements. The planner is similar to the systems EFP or EFP2.0 in that it is a forward-search planner and can deal with unlimited nested beliefs and common knowledge by employing a Kripke based state representation and implementing an update model based transition function. Different from EFP, EFP3.0 employs a specification language that uses edge-conditioned update models for reasoning about effects of actions in multi-agent domains. We describe the basics of EFP3.0 and conduct experimental evaluations of the system against state-of-the-art epistemic planners. We discuss potential improvements that could be useful for scalability and efficiency of the system.
more »
« less
- PAR ID:
- 10443249
- Date Published:
- Journal Name:
- Proceedings of the International Conference on Automated Planning and Scheduling
- Volume:
- 33
- Issue:
- 1
- ISSN:
- 2334-0835
- Page Range / eLocation ID:
- 334 to 342
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Designing agents that reason and act upon the world has always been one of the main objectives of the Artificial Intelligence community. While for planning in “simple” domains the agents can solely rely on facts about the world, in several contexts, e.g. , economy, security, justice and politics, the mere knowledge of the world could be insufficient to reach a desired goal. In these scenarios, epistemic reasoning, i.e. , reasoning about agents’ beliefs about themselves and about other agents’ beliefs, is essential to design winning strategies. This paper addresses the problem of reasoning in multi-agent epistemic settings exploiting declarative programming techniques. In particular, the paper presents an actual implementation of a multi-shot Answer Set Programming -based planner that can reason in multi-agent epistemic settings, called PLATO (e P istemic mu L ti-agent A nswer se T programming s O lver). The ASP paradigm enables a concise and elegant design of the planner, w.r.t. other imperative implementations, facilitating the development of formal verification of correctness. The paper shows how the planner, exploiting an ad-hoc epistemic state representation and the efficiency of ASP solvers, has competitive performance results on benchmarks collected from the literature.more » « less
-
Endriss, U.; Nowé, A.; Dignum, F.; Lomuscio, A. (Ed.)Sabre is a narrative planner—a centralized, omniscient decision maker that solves a multi-agent storytelling problem. The planner has an author goal it must achieve, but every action taken by an agent must make sense according to that agent’s individual intentions and limited, possibly wrong beliefs. This paper describes the implementation of Sabre, which supports a rich action syntax and imposes no arbitrary limit on the depth of theory of mind. We present a search procedure for generating plans that achieve the author goals while ensuring all agent actions are explained, and we report the system’s performance on several narrative planning benchmark problems.more » « less
-
Thue, David; Ware, Stephen G. (Ed.)Sabre is a narrative planner—a centralized, omniscient decision maker that solves a multi-agent storytelling problem. The planner has an author goal it must achieve, but every action taken by an agent must make sense according to that agent’s individual intentions and limited, possibly wrong beliefs. This paper describes the implementation of Sabre, which supports a rich action syntax and imposes no arbitrary limit on the depth of theory of mind. We present a search procedure for generating plans that achieve the author goals while ensuring all agent actions are explained, and we report the system’s performance on several narrative planning benchmark problems.more » « less
-
Multi-Agent Motion Planning (MAMP) finds various applications in fields such as traffic management, airport operations, and warehouse automation. In many of these environments, differential drive robots are commonly used. These robots have a kinodynamic model that allows only in-place rotation and movement along their current orientation, subject to speed and acceleration limits. However, existing Multi-Agent Path Finding (MAPF)-based methods often use simplified models for robot kinodynamics, which limits their practicality and realism. In this paper, we introduce a three-level framework called MASS to address these challenges. MASS combines MAPF-based methods with our proposed stationary state search planner to generate high-quality kinodynamically-feasible plans. We further extend MASS using an adaptive window mechanism to address the lifelong MAMP problem. Empirically, we tested our methods on the single-shot grid map domain and the lifelong warehouse domain. Our method shows up to 400% improvements in terms of throughput compared to existing methods.more » « less
An official website of the United States government

