skip to main content


Title: Modelling Multi-Agent Epistemic Planning in ASP
Abstract Designing agents that reason and act upon the world has always been one of the main objectives of the Artificial Intelligence community. While for planning in “simple” domains the agents can solely rely on facts about the world, in several contexts, e.g. , economy, security, justice and politics, the mere knowledge of the world could be insufficient to reach a desired goal. In these scenarios, epistemic reasoning, i.e. , reasoning about agents’ beliefs about themselves and about other agents’ beliefs, is essential to design winning strategies. This paper addresses the problem of reasoning in multi-agent epistemic settings exploiting declarative programming techniques. In particular, the paper presents an actual implementation of a multi-shot Answer Set Programming -based planner that can reason in multi-agent epistemic settings, called PLATO (e P istemic mu L ti-agent A nswer se T programming s O lver). The ASP paradigm enables a concise and elegant design of the planner, w.r.t. other imperative implementations, facilitating the development of formal verification of correctness. The paper shows how the planner, exploiting an ad-hoc epistemic state representation and the efficiency of ASP solvers, has competitive performance results on benchmarks collected from the literature.  more » « less
Award ID(s):
1914635
NSF-PAR ID:
10209018
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Theory and Practice of Logic Programming
Volume:
20
Issue:
5
ISSN:
1471-0684
Page Range / eLocation ID:
593 to 608
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we develop a state transition function for partially observable multi-agent epistemic domains and implement it using Answer Set Programming (ASP). The transition function computes the next state upon an occurrence of a single action. Thus it can be used as a module in epistemic planners. Our transition function incorporates ontic, sensing and announcement actions and allows for arbitrary nested belief formulae and general common knowledge. A novel feature of our model is that upon an action occurrence, an observing agent corrects his (possibly wrong) initial beliefs about action precondition and his observability. By examples, we show that this step is necessary for robust state transition. We establish some properties of our state transition function regarding its soundness in updating beliefs of agents consistent with their observability. 
    more » « less
  2. Earlier epistemic planning systems for multi-agent domains generate plans that contain various types of actions such as ontic, sensing, or announcement actions. However, none of these systems consider untruthful announcements, i.e., none can generate plans that contain a lying or a misleading announcement. In this paper, we present a novel epistemic planner, called EFP3.0, for multi-agent domains with untruthful announcements. The planner is similar to the systems EFP or EFP2.0 in that it is a forward-search planner and can deal with unlimited nested beliefs and common knowledge by employing a Kripke based state representation and implementing an update model based transition function. Different from EFP, EFP3.0 employs a specification language that uses edge-conditioned update models for reasoning about effects of actions in multi-agent domains. We describe the basics of EFP3.0 and conduct experimental evaluations of the system against state-of-the-art epistemic planners. We discuss potential improvements that could be useful for scalability and efficiency of the system. 
    more » « less
  3. In multi-agent domains (MADs), an agent's action may not just change the world and the agent's knowledge and beliefs about the world, but also may change other agents' knowledge and beliefs about the world and their knowledge and beliefs about other agents' knowledge and beliefs about the world. The goals of an agent in a multi-agent world may involve manipulating the knowledge and beliefs of other agents' and again, not just their knowledge/belief about the world, but also their knowledge about other agents' knowledge about the world. Our goal is to present an action language (mA+) that has the necessary features to address the above aspects in representing and RAC in MADs. mA+ allows the representation of and reasoning about different types of actions that an agent can perform in a domain where many other agents might be present -- such as world-altering actions, sensing actions, and announcement/communication actions. It also allows the specification of agents' dynamic awareness of action occurrences which has future implications on what agents' know about the world and other agents' knowledge about the world. mA+ considers three different types of awareness: full-, partial- awareness, and complete oblivion of an action occurrence and its effects. This keeps the language simple, yet powerful enough to address a large variety of knowledge manipulation scenarios in MADs. The semantics of mA+ relies on the notion of state, which is described by a pointed Kripke model and is used to encode the agent's knowledge and the real state of the world. It is defined by a transition function that maps pairs of actions and states into sets of states. We illustrate properties of the action theories, including properties that guarantee finiteness of the set of initial states and their practical implementability. Finally, we relate mA+ to other related formalisms that contribute to RAC in MADs. 
    more » « less
  4. Abstract  
    more » « less
  5. null (Ed.)
    The paper introduces the notion of an epistemic argumentation framework (EAF) as a means to integrate the beliefs of a reasoner with argumentation. Intuitively, an EAF encodes the beliefs of an agent who reasons about arguments. Formally, an EAF is a pair of an argumentation framework and an epistemic constraint. The semantics of the EAF is defined by the notion of an ω-epistemic labelling set, where ω is complete, stable, grounded, or preferred, which is a set of ω-labellings that collectively satisfies the epistemic constraint of the EAF. The paper shows how EAF can represent different views of reasoners on the same argumentation framework. It also includes representing preferences in EAF and multi-agent argumentation. Finally, the paper discusses complexity issues and computation using epistemic logic programming. 
    more » « less