skip to main content


Title: Offline Congestion Games: How Feedback Type Affects Data Coverage Requirement
This paper investigates when one can efficiently recover an approximate Nash Equilibrium (NE) in offline congestion games. The existing dataset coverage assumption in offline general-sum games inevitably incurs a dependency on the number of actions, which can be exponentially large in congestion games. We consider three different types of feedback with decreasing revealed information. Starting from the facility-level (a.k.a., semi-bandit) feedback, we propose a novel one-unit deviation coverage condition and show a pessimism-type algorithm that can recover an approximate NE. For the agent-level (a.k.a., bandit) feedback setting, interestingly, we show the one-unit deviation coverage condition is not sufficient. On the other hand, we convert the game to multi-agent linear bandits and show that with a generalized data coverage assumption in offline linear bandits, we can efficiently recover the approximate NE. Lastly, we consider a novel type of feedback, the game-level feedback where only the total reward from all agents is revealed. Again, we show the coverage assumption for the agent-level feedback setting is insufficient in the game-level feedback setting, and with a stronger version of the data coverage assumption for linear bandits, we can recover an approximate NE. Together, our results constitute the first study of offline congestion games and imply formal separations between different types of feedback.  more » « less
Award ID(s):
2023166 2212261
NSF-PAR ID:
10443274
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Conference on Learning Representations
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Tree-form sequential decision making (TFSDM) extends classical one-shot decision making by modeling tree-form interactions between an agent and a potentially adversarial environment. It captures the online decision-making problems that each player faces in an extensive-form game, as well as Markov decision processes and partially-observable Markov decision processes where the agent conditions on observed history. Over the past decade, there has been considerable effort into designing online optimization methods for TFSDM. Virtually all of that work has been in the full-feedback setting, where the agent has access to counterfactuals, that is, information on what would have happened had the agent chosen a different action at any decision node. Little is known about the bandit setting, where that assumption is reversed (no counterfactual information is available), despite this latter setting being well understood for almost 20 years in one-shot decision making. In this paper, we give the first algorithm for the bandit linear optimization problem for TFSDM that offers both (i) linear-time iterations (in the size of the decision tree) and (ii) O(T−−√) cumulative regret in expectation compared to any fixed strategy, at all times T. This is made possible by new results that we derive, which may have independent uses as well: 1) geometry of the dilated entropy regularizer, 2) autocorrelation matrix of the natural sampling scheme for sequence-form strategies, 3) construction of an unbiased estimator for linear losses for sequence-form strategies, and 4) a refined regret analysis for mirror descent when using the dilated entropy regularizer. 
    more » « less
  2. null (Ed.)
    Tree-form sequential decision making (TFSDM) extends classical one-shot decision making by modeling tree-form interactions between an agent and a potentially adversarial environment. It captures the online decision-making problems that each player faces in an extensive-form game, as well as Markov decision processes and partially-observable Markov decision processes where the agent conditions on observed history. Over the past decade, there has been considerable effort into designing online optimization methods for TFSDM. Virtually all of that work has been in the full-feedback setting, where the agent has access to counterfactuals, that is, information on what would have happened had the agent chosen a different action at any decision node. Little is known about the bandit setting, where that assumption is reversed (no counterfactual information is available), despite this latter setting being well understood for almost 20 years in one-shot decision making. In this paper, we give the first algorithm for the bandit linear optimization problem for TFSDM that offers both (i) linear-time iterations (in the size of the decision tree) and (ii) O(T−−√) cumulative regret in expectation compared to any fixed strategy, at all times T. This is made possible by new results that we derive, which may have independent uses as well: 1) geometry of the dilated entropy regularizer, 2) autocorrelation matrix of the natural sampling scheme for sequence-form strategies, 3) construction of an unbiased estimator for linear losses for sequence-form strategies, and 4) a refined regret analysis for mirror descent when using the dilated entropy regularizer. 
    more » « less
  3. Experience management (EM) agents in multiplayer serious games face unique challenges and responsibilities regarding the fair treatment of players. One such challenge is the Greedy Bandit Problem that arises when using traditional Multi-Armed Bandits (MABs) as EM agents, which results in some players routinely prioritized while others may be ignored. We will show that this problem can be a cause of player non-adherence in a multiplayer serious game played by human users. To mitigate this effect, we propose a new bandit strategy, the Shapley Bandit, which enforces fairness constraints in its treatment of players based on the Shapley Value. We evaluate our approach via simulation with virtual players, finding that the Shapley Bandit can be effective in providing more uniform treatment of players while incurring only a slight cost in overall performance to a typical greedy approach. Our findings highlight the importance of fair treatment among players as a goal of multiplayer EM agents and discuss how addressing this issue may lead to more effective agent operation overall. The study contributes to the understanding of player modeling and EM in serious games and provides a promising approach for balancing fairness and engagement in multiplayer environments.

     
    more » « less
  4. Multi-player games with lexicographic cost functions can capture a variety of driving and racing scenarios and are known to have pure-strategy Nash Equilibria (NE) under certain conditions. The standard Iterated Best Response (IBR) procedure for finding such equilibria can be slow because computing the best response for each agent generally involves solving a non-convex optimization problem. In this paper, we introduce a type of game which uses a lexicographic cost function. We show that for this class of games, the best responses can be effectively computed through piece-wise linear approximations. This enables us to approximate the NE using a linearized version of IBR. We show the gap between the linear approximations returned by our linearized IBR and the true best response drops asymptotically. We implement the algorithm and show that it can find approximate NE for a handful of agents driving in realistic scenarios in under 10 seconds. 
    more » « less
  5. Banerjee, Arindam ; Fukumizu, Kenji (Ed.)
    We study a constrained contextual linear bandit setting, where the goal of the agent is to produce a sequence of policies, whose expected cumulative reward over the course of multiple rounds is maximum, and each one of them has an expected cost below a certain threshold. We propose an upper-confidence bound algorithm for this problem, called optimistic pessimistic linear bandit (OPLB), and prove a sublinear bound on its regret that is inversely proportional to the difference between the constraint threshold and the cost of a known feasible action. Our algorithm balances exploration and constraint satisfaction using a novel idea that scales the radii of the reward and cost confidence sets with different scaling factors. We further specialize our results to multi-armed bandits and propose a computationally efficient algorithm for this setting and prove a a regret bound that is better than simply casting multi-armed bandits as an instance of linear bandits and using the regret bound of OPLB. We also prove a lower-bound for the problem studied in the paper and provide simulations to validate our theoretical results. Finally, we show how our algorithm and analysis can be extended to multiple constraints and to the case when the cost of the feasible action is unknown. 
    more » « less