skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Krill availability in adjacent Adélie and gentoo penguin foraging regions near Palmer Station, Antarctica
Abstract The Palmer Deep canyon along the West Antarctic Peninsula is a biological hotspot with abundant phytoplankton and krill supporting Adélie and gentoo penguin rookeries at the canyon head. Nearshore studies have focused on physical mechanisms driving primary production and penguin foraging, but less is known about finer‐scale krill distribution and density. We designed two acoustic survey grids paired with conductivity–temperature–depth profiles within adjacent Adélie and gentoo penguin foraging regions near Palmer Station, Antarctica. The grids were sampled from January to March 2019 to assess variability in krill availability and associations with oceanographic properties. Krill density was similar in the two regions, but krill swarms were longer and larger in the gentoo foraging region, which was also less stratified and had lower chlorophyll concentrations. In the inshore zone near penguin colonies, depth‐integrated krill density increased from summer to autumn (January–March) independent of chlorophyll concentration, suggesting a life history‐driven adult krill migration rather than a resource‐driven biomass increase. The daytime depth of krill biomass deepened through the summer and became decoupled from the chlorophyll maximum in March as diel vertical migration magnitude likely increased. Penguins near Palmer Station did not appear to be limited by krill availability during our study, and regional differences in krill depth match the foraging behaviors of the two penguin species. Understanding fine‐scale physical forcing and ecological interactions in coastal Antarctic hotspots is critical for predicting how environmental change will impact these ecosystems.  more » « less
Award ID(s):
1744859 1745018 1745009 2026045
PAR ID:
10443339
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
66
Issue:
6
ISSN:
0024-3590
Page Range / eLocation ID:
p. 2234-2250
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The distribution of marine zooplankton depends on both ocean currents and swimming behavior. Many zooplankton perform diel vertical migration (DVM) between the surface and subsurface, which can have different current regimes. If concentration mechanisms, such as fronts or eddies, are present in the subsurface, they may impact zooplankton near-surface distributions when they migrate to near-surface waters. A subsurface, retentive eddy within Palmer Deep Canyon (PDC), a submarine canyon along the West Antarctic Peninsula (WAP), retains diurnal vertically migrating zooplankton in previous model simulations. Here, we tested the hypothesis that the presence of the PDC and its associated subsurface eddy increases the availability and delivery of simulated Antarctic krill to nearby penguin foraging regions with model simulations over a single austral summer. We found that the availability and delivery rates of simulated krill to penguin foraging areas adjacent to PDC were greater when the PDC was present compared to when PDC was absent, and when DVM was deepest. These results suggest that the eddy has potential to enhance krill availability to upper trophic level predators and suggests that retention may play a significant role in resource availability for predators in other similar systems along the WAP and in other systems with sustained subsurface eddies. 
    more » « less
  2. Salpa thompsoniis an ephemerally abundant pelagic tunicate in the waters of the Southern Ocean that makes significant contributions to carbon flux and nutrient recycling in the region. WhileS. thompsoni, hereafter referred to as “salps”, was historically described as a polar-temperate species with a latitudinal range of 40 – 60°S, observations of salps in coastal waters of the Western Antarctic Peninsula have become more common in the last 50 years. There is a need to better understand the variability in salp densities and vertical distribution patterns in Antarctic waters to improve predictions of their contribution to the global carbon cycle. We used acoustic data obtained from an echosounder mounted to an autonomous underwater Slocum glider to investigate the anomalously high densities of salps observed in Palmer Deep Canyon, at the Western Antarctic Peninsula, in the austral summer of 2020. Acoustic measurements of salps were made synchronously with temperature and salinity recordings (all made on the glider downcasts), and asynchronously with chlorophyll-ameasurements (made on the glider upcasts and matched to salp measurements by profile) across the depth of the water column near Palmer Deep Canyon for 60 days. Using this approach, we collected high-resolution data on the vertical and temporal distributions of salps, their association with key water masses, their diel vertical migration patterns, and their correlation with chlorophyll-a. While salps were recorded throughout the water column, they were most prevalent in Antarctic Surface Water. A peak in vertical distribution was detected from 0 – 50 m regardless of time of day or point in the summer season. We found salps did not undergo diel vertical migration in the early season, but following the breakdown of the remnant Winter Water layer in late January, marginal diel vertical migration was initiated and sustained through to the end of our study. There was a significant, positive correlation between salp densities and chlorophyll-a. To our knowledge, this is the first high resolution assessment of salp spatial (on the vertical) and temporal distributions in the Southern Ocean as well as the first to use glider-borne acoustics to assess salpsin situ. 
    more » « less
  3. Abstract Antarctic krill (Euphausia superba) are considered a keystone species for higher trophic level predators along the West Antarctic Peninsula (WAP) during the austral summer. The connectivity of krill may play a critical role in predator biogeography, especially for central-place foragers such as thePygoscelisspp. penguins that breed along the WAP during the austral summer. Antarctic krill are also heavily fished commercially; therefore, understanding population connectivity of krill is critical to effective management. Here, we used a physical ocean model to examine adult krill connectivity in this region using simulated krill with realistic diel vertical migration behaviors across four austral summers. Our results indicate that krill north and south of Low Island and the southern Bransfield Strait are nearly isolated from each other and that persistent current features play a role in this lack of inter-region connectivity. Transit and entrainment times were not correlated with penguin populations at the large spatial scales examined. However, long transit times and reduced entrainment correlate spatially with the areas where krill fishing is most intense, which heightens the risk that krill fishing may lead to limited krill availability for predators. 
    more » « less
  4. Abstract ContextThe interaction between topography and wind influences snow cover patterns, which can determine the distribution of species reliant on snow-free habitats. Past studies suggest snow accumulation creates suboptimal breeding habitats for Adélie penguins, leading to colony extinctions. However, evidence linking snow cover to landscape features is lacking. ObjectivesWe aimed to model landscape-driven snow cover patterns, identify long-term weather changes, and determine the impact of geomorphology and snow conditions on penguin colony persistence. MethodsWe combined remotely sensed imagery, digital surface models, and > 30 years of weather data with penguin population monitoring from 1975 to 2022 near Palmer Station, west Antarctic Peninsula. Using a multi-model approach, we identified landscape factors driving snow distribution on two islands. Historic and current penguin sub-colony perimeters were used to understand habitat selection, optimal habitat features, and factors associated with extinctions. ResultsDecadal and long-term trends in wind and snow conditions were detected. Snow accumulated on lower elevations and south-facing slopes driven by the north-northeasterly winds while Adélie penguins occupied higher elevations and more north-facing slopes. On Torgersen Island, sub-colonies on south aspects have gone extinct, and only five of the 23 historic sub-colonies remain active, containing 7% of the 1975 population. Adélie penguins will likely be extinct on this island in < 25 years. ConclusionsAdélie penguin populations are in decline throughout the west Antarctic Peninsula with multiple climate and human impacts likely driving Adélie penguins towards extinction in this region. We demonstrate precipitation has detrimental effects on penguins, an often overlooked yet crucial factor for bird studies. 
    more » « less
  5. Abstract The Antarctic krillEuphausia superbais often considered an herbivore but is notable for its trophic flexibility, which includes feeding on protistan and metazoan zooplankton. Characterizing krill trophic position (TP) is important for understanding carbon and energy flow from phytoplankton to vertebrate predators and to the deep ocean, especially as plankton composition is sensitive to changing climate. We used repeated field sampling and experiments to study feeding by juvenile krill during three austral summers in waters near Palmer Station, Antarctica. Our approach was to combine seasonal carbon budgets, gut fluorescence measurements, imaging flow cytometry, and compound‐specific isotope analysis of amino acids. Field measurements coupled to experimentally derived grazing functional response curves suggest that phytoplankton grazing alone was insufficient to support the growth and basal metabolism of juvenile krill. Phytoplankton consumption by juvenile krill was limited due to inefficient feeding on nanoplankton (2–20 μm), which constituted the majority of autotrophic prey. Mean krill TP and the metazoan dietary fraction increased in years with higher mesozooplankton biomass, which was not coupled to phytoplankton biomass. Comparing TP estimates using δ15N of different amino acids indicated a substantial and consistent food‐web contribution from heterotrophic protists. Phytoplankton, metazoans, and heterotrophic protists all were important contributors to a diverse krill diet that changed substantially among years. Juvenile krill fed mostly on heterotrophic prey during summer near Palmer Station, and this food web complexity should be considered more broadly throughout the changing Southern Ocean. 
    more » « less