skip to main content


Title: Projected Changes of Water Currents and Circulation in Lake Michigan Under Representative Concentration Pathways Scenarios
Abstract

The Great Lakes’ atmosphere predominantly signposts signatures of climate change in terms of an elongated summer, depletion of ice‐cover, and up‐surging lake surface temperature and air temperature, which demands an in‐depth comprehension of future lake circulation dynamics. After satisfactory validations for the lake meteorology and hydrodynamics during 2010–2019, historical and future predictions based on a downscaled climate model for the Great Lakes region under Representative Concentration Pathways (RCP) 4.5 and 8.5 scenarios are used to drive the Finite‐Volume Community Ocean Model applied to Lake Michigan during the ice‐free months of 2010–2069. Substantial rises in lake surface current speed during May–June and September–October are connected to the rising wind speed and air temperature in the lake domain. Under the RCP 4.5 scenario, the study expects a 6.5% per decade relative increase in surface current speed, with a rise of 1.3% in the coastal circulation (within 50‐m depth from the coast) until 2050. Surface circulation strength can reach the highest rise (13%) during 2030–2039 and a slight drop (−1%) during 2050–2069. During May–December, only a 0.3% variation is predicted in current magnitudes under RCP 4.5 and 8.5 scenarios. The projections anticipate the occurrence of a stronger, wider, and northward shifting lake gyre with changing lake meteorology. Further analysis indicates that the reduced thermal gradient over the lake surface tends to resist sharp modulations in winds and lake dynamics in the successive decades.

 
more » « less
NSF-PAR ID:
10443347
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
126
Issue:
5
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Observational evidence indicates that the West Antarctic Ice Sheet (WAIS) is losing mass at an accelerating rate. Impacts to global climate resulting from changing ocean circulation patterns due to increased freshwater runoff from Antarctica in the future could have significant implications for global heat transport, but to-date this topic has not been investigated using complex numerical models with realistic freshwater forcing. Here, we present results from a high resolution fully coupled ocean-atmosphere model (CESM 1.2) forced with runoff from Antarctica prescribed from a high resolution regional ice sheet-ice shelf model. Results from the regional simulations indicate a potential freshwater contribution from Antarctica of up to 1 m equivalent sea level rise by the end of the century under RCP 8.5 indicating that a substantial input of freshwater into the Southern Ocean is possible. Our high resolution global simulations were performed under IPCC future climate scenarios RCP 4.5 and 8.5. We will present results showing the impact of WAIS collapse on global ocean circulation, sea ice, air temperature, and salinity in order to assess the potential for abrupt climate change triggered by WAIS collapse. 
    more » « less
  2. Abstract

    Permafrost, a key component of Arctic ecosystems, is currently affected by climate warming and anticipated to undergo further significant changes in this century. The most pronounced changes are expected to occur in the transition zone between the discontinuous and continuous types of permafrost. We apply a transient temperature dynamic model to investigate the spatiotemporal evolution of permafrost conditions on the Seward Peninsula, Alaska—a region currently characterized by continuous permafrost in its northern part and discontinuous permafrost in the south. We calibrate model parameters using a variational data assimilation technique exploiting historical ground temperature measurements collected across the study area. The model is then evaluated with a separate control set of the ground temperature data. Calibrated model parameters are distributed across the domain according to ecosystem types. The forcing applied to our model consists of historic monthly temperature and precipitation data and climate projections based on the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. Simulated near‐surface permafrost extent for the 2000–2010 decade agrees well with existing permafrost maps and previous Alaska‐wide modeling studies. Future projections suggest a significant increase (3.0°C under RCP 4.5 and 4.4°C under RCP 8.5 at the 2 m depth) in mean decadal ground temperature on average for the peninsula for the 2090–2100 decade when compared to the period of 2000–2010. Widespread degradation of the near‐surface permafrost is projected to reduce its extent at the end of the 21st century to only 43% of the peninsula's area under RCP 4.5 and 8% under RCP 8.5.

     
    more » « less
  3. Observational evidence indicates that the West Antarctic Ice Sheet is losing mass at an accelerated rate while ice sheet models highlight the potential for a significant ice collapse in the next century. The impacts of this large fresh water forcing on sea-ice formation, ocean circulation and climate could be significant, but to-date they have not been investigated using complex numerical models with realistic fresh water forcing and dynamical ice sheet models. Here, we present results from several climate model simulations performed under IPCC future climate scenarios RCP 4.5 and 8.5 with a high-resolution, fully coupled, ocean-atmosphere model (CESM 1.2). In each experiment, runoff from Antarctica is prescribed from a regional dynamic/thermodynamic ice sheet/shelf model. Our results highlight a significant rise in subsurface ocean temperatures (>1C) at the ice sheet grounding line that may accelerate rates of ice melt beyond those currently projected. In contrast, the increased runoff creates a cold surface layer that allows Antarctic sea ice to continue to expand through the end of the current century. It is vital that these processes are accounted for in the next generation of climate and ice sheet models. 
    more » « less
  4. Abstract

    Northern circumpolar permafrost thaw affects global carbon cycling, as large amounts of stored soil carbon becomes accessible to microbial breakdown under a warming climate. The magnitude of carbon release is linked to the extent of permafrost thaw, which is locally variable and controlled by soil thermodynamics. Soil thermodynamic properties, such as thermal diffusivity, govern the reactivity of the soil‐atmosphere thermal gradient, and are controlled by soil composition and drainage. In order to project permafrost thaw for an Alaskan tundra experimental site, we used seven years of site data to calibrate a soil thermodynamic model using a data assimilation technique. The model reproduced seasonal and interannual temperature dynamics for shallow (5–40 cm) and deep soil layers (2–4 m), and simulations of seasonal thaw depth closely matched observed data. The model was then used to project permafrost thaw at the site to the year 2100 using climate forcing data for three future climate scenarios (RCP 4.5, 6.0, and 8.5). Minimal permafrost thawing occurred until mean annual air temperatures rose above the freezing point, after which we measured over a 1 m increase in thaw depth for every 1 °C rise in mean annual air temperature. Under no projected warming scenario was permafrost remaining in the upper 3 m of soil by 2100. We demonstrated an effective data assimilation method that optimizes parameterization of a soil thermodynamic model. The sensitivity of local permafrost to climate warming illustrates the vulnerability of sub‐Arctic tundra ecosystems to significant and rapid soil thawing.

     
    more » « less
  5. Abstract

    Lakes represent as much as ∼25% of the total land surface area in lowland permafrost regions. Though decreasing lake area has become a widespread phenomenon in permafrost regions, our ability to forecast future patterns of lake drainage spanning gradients of space and time remain limited. Here, we modeled the drivers of gradual (steady declining lake area) and catastrophic (temporally abrupt decrease in lake area) lake drainage using 45 years of Landsat observations (i.e. 1975–2019) across 32 690 lakes spanning climate and environmental gradients across northern Alaska. We mapped lake area using supervised support vector machine classifiers and object based image analyses using five-year Landsat image composites spanning 388 968 km2. Drivers of lake drainage were determined with boosted regression tree models, using both static (e.g. lake morphology, proximity to drainage gradient) and dynamic predictor variables (e.g. temperature, precipitation, wildfire). Over the past 45 years, gradual drainage decreased lake area between 10% and 16%, but rates varied over time as the 1990s recorded the highest rates of gradual lake area losses associated with warm periods. Interestingly, the number of catastrophically drained lakes progressively decreased at a rate of ∼37% decade−1from 1975–1979 (102–273 lakes draining year−1) to 2010–2014 (3–8 lakes draining year−1). However this 40 year negative trend was reversed during the most recent time-period (2015–2019), with observations of catastrophic drainage among the highest on record (i.e. 100–250 lakes draining year−1), the majority of which occurred in northwestern Alaska. Gradual drainage processes were driven by lake morphology, summer air and lake temperature, snow cover, active layer depth, and the thermokarst lake settlement index (R2adj= 0.42, CV = 0.35,p< 0.0001), whereas, catastrophic drainage was driven by the thawing season length, total precipitation, permafrost thickness, and lake temperature (R2adj= 0.75, CV = 0.67,p< 0.0001). Models forecast a continued decline in lake area across northern Alaska by 15%–21% by 2050. However these estimates are conservative, as the anticipated amplitude of future climate change were well-beyond historical variability and thus insufficient to forecast abrupt ‘catastrophic’ drainage processes. Results highlight the urgency to understand the potential ecological responses and feedbacks linked with ongoing Arctic landscape reorganization.

     
    more » « less