skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Challenges and Capabilities in Estimating Snow Mass Intercepted in Conifer Canopies With Tree Sway Monitoring
Abstract Snowpack accumulation in forested watersheds depends on the amount of snow intercepted in the canopy and its partitioning into sublimation, unloading, and melt. A lack of canopy snow measurements limits our ability to evaluate models that simulate canopy processes and predict snowpack. We tested whether monitoring changes in wind‐induced tree sway is a viable technique for detecting snow interception and quantifying canopy snow water equivalent (SWE). Over a 6 year period in Colorado, we monitored hourly sway of two conifers, each instrumented with an accelerometer sampling at 12 Hz. We developed an approach to distinguish changes in sway frequency due to thermal effects on tree rigidity versus intercepted snow mass. Over 60% of days with canopy snow had a sway signal that could not be distinguished from thermal effects. However, larger changes in tree sway could not generally be attributed to thermal effects, and canopy snow was present 93%–95% of the time, as confirmed with classified PhenoCam imagery. Using sway tests, we converted changes in sway to canopy SWE, which were correlated with total snowstorm amounts from a nearby SNOTEL site (Spearmanr = 0.72 to 0.80,p < 0.001). Greater canopy SWE was associated with storm temperatures between −7°C and 0°C and wind speeds less than 4 m s−1. Lower canopy SWE prevailed in storms with lower temperatures and higher wind speeds. Monitoring tree sway is a viable approach for quantifying canopy SWE, but challenges remain in converting changes in sway to mass and distinguishing thermal and snow mass effects on tree sway.  more » « less
Award ID(s):
1761441
PAR ID:
10443448
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
58
Issue:
3
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding how the presence of a forest canopy influences the underlying snowpack is critical to making accurate model predictions of bulk snow density and snow water equivalent (SWE). To investigate the relative importance of forest processes on snow density and SWE, we applied the SUMMA model at three sites representing diverse snow climates in Colorado (USA), Oregon (USA), and Alberta (Canada) for 5 years. First, control simulations were run for open and forest sites. Comparisons to observations showed the uncalibrated model with NLDAS‐2 forcing performed reasonably. Then, experiments were completed to isolate how forest processes affected modelled snowpack density and SWE, including: (1) mass reduction due to interception loss, (2) changes in the phase and amount of water delivered from the canopy to the underlying snow, (3) varying new snow density from reduced wind speed, and (4) modification of incoming longwave and shortwave radiation. Delivery effects (2) increased forest snowpack density relative to open areas, often more than 30%. Mass effects (1) and wind effects (3) decreased forest snowpack density, but generally by less than 6%. The radiation experiment (4) yielded negligible to positive effects (i.e., 0%–10%) on snowpack density. Delivery effects on density were greatest at the warmest times in the season and at the warmest site (Oregon): higher temperatures increased interception and melted intercepted snow, which then dripped to the underlying snowpack. In contrast, mass effects and radiation effects were shown to have the greatest impact on forest‐to‐open SWE differences, yielding differences greater than 30%. The study highlights the importance of delivery effects in models and the need for new types of observations to characterize how canopies influence the flux of water to the snow surface. 
    more » « less
  2. Abstract Understanding the role of trees in attenuating the timing and magnitude of effective precipitation reaching the land surface requires improved monitoring of interception dynamics. We developed a new field monitoring approach to leverage continuous monitoring of tree sway motion in quantifying continuous, dynamic time series of canopy water storage during storms. Using this approach, we additionally observed a hysteretic interception response in tree canopies, which indicates that interpreting interception processes through tree sway signals requires the consideration of changing water (i.e., mass) distribution during and following storms. These findings suggest that continuously monitoring tree sway motions offers a new technique to quantify interception processes. This advancement in whole tree interception may help improve our understanding of how interception affects ecosystem water availability/productivity and runoff dynamics that are important for both natural ecosystems and stormwater management in cities. 
    more » « less
  3. Abstract Understanding and predicting future consequences of increasingly frequent and intense droughts requires improved monitoring of forest response. Over the course of a day, tree mass and stiffness respond dynamically to changing atmospheric and hydraulic conditions. By conducting a 24‐hr experiment, we sought to disentangle the effects of changing mass and stiffness on tree sway period. We observed that tree mass and stiffness are influenced by changes in tree water content and that diurnal changes in tree sway period are chiefly driven by the loss and recovery of tree stiffness. Over a season‐long time series in twoQuercus rubra(red oak) trees, we observed more pronounced and substantially higher midday increases (+7%) in sway period during days with the driest soil moisture (<0.09) as compared to days when soils were wetter. These findings suggest that continuously monitoring tree sway period offers an innovative approach to detecting water stress in trees. 
    more » « less
  4. Abstract Effective water resource management in the western United States (WUS) is possible only with accurate monitoring and forecasting of seasonal snowpack. Seasonal snowpack, a major water source for the WUS, is declining due to anthropogenic climate change. Overprinted on this trends is year-to-year variance in snowpack extent and mass due to influences from teleconnections related to the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Recently in the 2015 and 2016 winters, extreme droughts in the coastal WUS, mainly the Pacific Northwest (PNW) states of Washington and Oregon were linked with anomalously warm sea surface temperatures (SST) in northeastern Pacific Ocean. Here, we use convergent cross maps (CCMs) to analyze time series of SSTs and snow water equivalent (SWE) in the PNW. For some ecoregions, we show that extratropical SSTs may have a stronger influence on snowfall and snow accumulation in the PNW compared to tropical indices of climatic variability. Cold (warm) SSTs in the northeast Pacific lead to high (low) snow years. CCMs also performed better in recreating SWE anomalies compared to linear regressions with lagged predictor variables. Accounting for the influence of SSTs may help water resource managers to better predict and prepare for extreme snow events in the future. 
    more » « less
  5. Intermittent snow depth observations can be leveraged with data assimilation (DA) to improve model estimates of snow water equivalent (SWE) at the point scale. A key consideration for scaling a DA system to the basin scale is its performance at locations with forest cover – where canopy-snow interactions affect snow accumulation and melt, yet are difficult to model and parameterize. We implement a particle filter (PF) assimilation technique to assimilate intermittent depth observations into the Flexible Snow Model (FSM2), and validate the output against snow density and SWE measurements across paired forest and open sites, at two locations with different climates and forest structures. Assimilation reduces depth error by 70-90%, density error by 5-30%, and SWE error by 50-70% at forest locations (relative to control model runs) and brings errors in-line with adjacent open sites. The PF correctly simulates the seasonal evolution of the snowpack under forest canopy, including cases where interception lowers SWE in the forest during accumulation, and shading reduces melt during the ablation season (relative to open sites). The snow model outputs are sensitive to canopy-related parameters, but DA reduces the range in depth and SWE estimates resulting from spatial variations or uncertainties in these parameters by more than 50%. The results demonstrate that the challenge of accurately measuring, estimating, or calibrating canopy-related parameters is reduced when snow depth observations are assimilated to improve SWE estimates.</p> 
    more » « less