skip to main content


Title: Point Pattern Estimators for Multi-Beam Lidar Scans
In this work, point pattern estimators are used to analyze the distribution of measurements from a multi-beam Lidar on a pitching platform. Multi-beam Lidars have high resolution in the horizontal plane, but poor vertical resolution. Placing the Lidar on a pitching base improves this resolution, but causes the distribution of measurements to be highly irregular. In this work, these measurement distributions are treated as point patterns and three estimators are used to quantity how measurements are spaced, which has implications in robotic detection of objects using Lidar sensors. These estimators are used to demonstrate how a pitching trajectory for the platform can be chosen to improve multiple performance criteria, such as increasing the likelihood of detection of an object, or adjusting how closely measurements should be spaced.  more » « less
Award ID(s):
1658696
NSF-PAR ID:
10443530
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
Page Range / eLocation ID:
335 to 340
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. A comparison of polar stratospheric cloud (PSC) occurrence from 2006 to2010 is presented, as observed from the ground-based lidar station at McMurdo(Antarctica) and by the satellite-borne CALIOP lidar (Cloud-Aerosol Lidarwith Orthogonal Polarization) measuring over McMurdo. McMurdo (Antarctica) isone of the primary lidar stations for aerosol measurements of the NDACC (Network forDetection of Atmospheric Climate Change). The ground-based observations havebeen classified with an algorithm derived from the recent v2 detection andclassification scheme, used to classify PSCs observed by CALIOP.

    A statistical approach has been used to compare ground-based and satellite-based observations, since point-to-point comparison is often troublesome dueto the intrinsic differences in the observation geometries and the imperfectoverlap of the observed areas.

    A comparison of space-borne lidar observations and a selection of simulationsobtained from chemistry–climate models (CCMs) has been made by using a series ofquantitative diagnostics based on the statistical occurrence of different PSCtypes. The distribution of PSCs over Antarctica, calculated by severalCCMVal-2 and CCMI chemistry–climate models has been compared with the PSCcoverage observed by the satellite-borne CALIOP lidar. The use of severaldiagnostic tools, including the temperature dependence of the PSCoccurrences, evidences the merits and flaws of the different models. Thediagnostic methods have been defined to overcome (at least partially) thepossible differences due to the resolution of the models and to identifydifferences due to microphysics (e.g., the dependence of PSC occurrence onTTNAT).

    A significant temperature bias of most models has been observed, as well as alimited ability to reproduce the longitudinal variations in PSC occurrencesobserved by CALIOP. In particular, a strong temperature bias has been observedin CCMVal-2 models with a strong impact on PSC formation. The WACCM-CCMI(Whole Atmosphere Community Climate Model – Chemistry-Climate ModelInitiative) model compares rather well with the CALIOP observations, althougha temperature bias is still present.

     
    more » « less
  2. In this article, a compressive sensing (CS) reconstruction algorithm is applied to data acquired from a nodding multi-beam Lidar system following a Lissajous-like trajectory. Multi-beam Lidar systems provide 3D depth information of the environment for applications in robotics, but the vertical resolution of these devices may be insufficient to identify objects, especially when the object is small and/or far from the robot. In order to overcome this issue, the Lidar can be nodded in order to obtain higher vertical resolution with the side-effect of increased scan time, especially when raster scan patterns are used. Such systems, especially when combined with nodding, also yield large volumes of data which may be difficult to store and mange on resource constrained systems. Using Lissajous-like nodding trajectories allows for the trade-off between scan time and horizontal and vertical resolutions through the choice of scan parameters. These patterns also naturally sub-sample the imaged area and the data can be further reduced by simply not collecting each data point along the trajectory. The final depth image must then be reconstructed from the sub-sampled data. In this article, a CS reconstruction algorithm is applied to data collected during a fast and therefore low-resolution Lissajous-like scan. Experiments and simulations show the feasibility of this method and compare its results to images produced from simple nearest-neighbor interpolation. 
    more » « less
  3. Abstract

    We use high‐resolution lidar microtopographic data and luminescence dating to constrain incremental Holocene–latest Pleistocene slip rates for the Wairau fault, a major dextral strike‐slip fault in the Marlborough Fault System, South Island, New Zealand. Our data come from two closely spaced study areas along the structurally simple, central portion of the fault: The well‐known Branch River terrace flight, and a previously undated series of offset risers and channel features several km to the east that we refer to as the Dunbeath site. Field work and mapping using lidar‐derived topography yields revised or novel measurements of nine fault offsets. We date those features using a post‐IR50‐IRSL225infrared stimulated luminescence dating method, and a stratigraphically informed Bayesian age model. The dated slip history of the Wairau fault is further constrained using newly cataloged offset measurements collected along a ∼35 km stretch of the fault, and available paleoseismic data. Incremental slip rates are precisely computed using a Monte Carlo resampling scheme. Our results provide a nearly earthquake‐by‐earthquake record of incremental slip, with pronounced variations in incremental slip rate spanning multiple millennia and tens of m of slip. These extreme, multi‐millennial variations in fault slip rate have basic implications for earthquake occurrence, plate boundary lithosphere behavior, and probabilistic seismic hazard assessment.

     
    more » « less
  4. null (Ed.)
    Continuous advancements in LiDAR technology have enabled compelling wind turbulence measurements within the atmospheric boundary layer with range gates shorter than 20 m and sampling frequency of the order of 10 Hz. However, estimates of the radial velocity from the back-scattered laser beam are inevitably affected by an averaging process within each range gate, generally modeled as a convolution between the actual velocity projected along the LiDAR line-of-sight and a weighting function representing the energy distribution of the laser pulse along the range gate. As a result, the spectral energy of the turbulent velocity fluctuations is damped within the inertial sub-range with respective reduction of the velocity variance, and, thus, not allowing to take advantage of the achieved spatio-temporal resolution of the LiDAR technology. In this article, we propose to correct this turbulent energy damping on the LiDAR measurements by reversing the effect of a low-pass filter, which can be estimated directly from the LiDAR measurements. LiDAR data acquired from three different field campaigns are analyzed to describe the proposed technique, investigate the variability of the filter parameters and, for one dataset, assess the procedure for spectral LiDAR correction against sonic anemometer data. It is found that the order of the low-pass filter used for modeling the energy damping on the LiDAR velocity measurements has negligible effects on the correction of the second-order statistics of the wind velocity. In contrast, its cutoff frequency plays a significant role in the spectral correction encompassing the smoothing effects connected with the LiDAR gate length. 
    more » « less
  5. Abstract: Commonly used drop-based channel models cannot satisfy the requirements of spatial consistency for millimeterwave (mmWave) channel modeling where transient motion or closely-spaced users need to be considered. A channel model having spatial consistency can capture the smooth variations of channels, when a user moves, or when multiple users are close to each other in a local area within, say, 10 m in an outdoor scenario. Spatial consistency is needed to support the testing of beamforming and beam tracking for massive multiple-input and multiple-output (MIMO) and multi-user MIMO in fifth-generation (5G) mmWave mobile networks. This paper presents a channel model extension and an associated implementation of spatial consistency in the NYUSIM channel simulation platform [1], [2]. Along with a mathematical model, we use measurements where the user moved along a street and turned at a corner over a path length of 75 m in order to derive realistic values of several key parameters such as correlation distance and the rate of cluster birth and death, that are shown to provide spatial consistency for NYUSIM in an urban microcell street canyon scenario. 
    more » « less