skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An alternative formalism for modeling spin
Abstract We present an alternative formalism for modeling spin. The ontological elements of this formalism are base-2 sequences of length n . The machinery necessary to model physics is then developed by considering correlations between base-2 sequences. Upon choosing a reference base-2 sequence, a relational system of numbers can be defined, which we interpret as quantum numbers. Based on the properties of these relational quantum numbers, the selection rules governing interacting spin systems are derived from first principles. A tool for calculating the associated probabilities, which are the squared Clebsch–Gordan coefficients in quantum mechanics, is also presented. The resulting model offers a vivid information theoretic picture of spin and interacting spin systems. Importantly, this model is developed without making any assumptions about the nature of space-time, which presents an interesting opportunity to study emergent space-time models.  more » « less
Award ID(s):
2014021
PAR ID:
10443737
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The European Physical Journal C
Volume:
82
Issue:
8
ISSN:
1434-6052
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A generalized effective spin-chain model is developed for studies of strongly interacting spinor gases in a one-dimensional (1D) optical lattice. The spinor gas is mapped to a system of spinless fermions and a spin chain. A generalized effective spin-chain Hamiltonian that acts on the mapped system is developed to study the static and dynamic properties of the spinor gas. This provides a computationally efficient alternative tool to study strongly interacting spinor gases in 1D lattice systems. This formalism permits the study of spinor gases with arbitrary spin and statistics, providing a generalized approach for 1D strongly interacting gases. By virtue of its simplicity, it provides an easier tool to study and gain deeper insights into the system. In combination with the model defined previously for continuum systems, a unified framework is developed. Studying the mapped system using this formalism recreates the physics of spinor gas in 1D lattice. Additionally, the time evolution of a quenched system is studied. The generalized effective spin-chain formalism has potential applications in the study of a multitude of interesting phenomena arising in lattice systems such as high-Tc superconductivity and the spin-coherent and spin-incoherent Luttinger liquid regimes. 
    more » « less
  2. We develop a formalism for computing the nonlinear response of interacting integrable systems. Our results are asymptotically exact in the hydrodynamic limit where perturbing fields vary sufficiently slowly in space and time. We show that spatially resolved nonlinear response distinguishes interacting integrable systems from noninteracting ones, exemplifying this for the Lieb–Liniger gas. We give a prescription for computing finite-temperature Drude weights of arbitrary order, which is in excellent agreement with numerical evaluation of the third-order response of the XXZ spin chain. We identify intrinsically nonperturbative regimes of the nonlinear response of integrable systems. 
    more » « less
  3. Abstract Spin systems are an attractive candidate for quantum-enhanced metrology. Here we develop a variational method to generate metrological states in small dipolar-interacting spin ensembles with limited qubit control. For both regular and disordered spatial spin configurations the generated states enable sensing beyond the standard quantum limit (SQL) and, for small spin numbers, approach the Heisenberg limit (HL). Depending on the circuit depth and the level of readout noise, the resulting states resemble Greenberger-Horne-Zeilinger (GHZ) states or Spin Squeezed States (SSS). Sensing beyond the SQL holds in the presence of finite spin polarization and a non-Markovian noise environment. The developed black-box optimization techniques for small spin numbers (N ≤ 10) are directly applicable to diamond-based nanoscale field sensing, where the sensor size limitsNand conventional squeezing approaches fail. 
    more » « less
  4. Abstract Numerical techniques to efficiently model out-of-equilibrium dynamics in interacting quantum many-body systems are key for advancing our capability to harness and understand complex quantum matter. Here we propose a new numerical approach which we refer to as generalized discrete truncated Wigner approximation (GDTWA). It is based on a discrete semi-classical phase space sampling and allows to investigate quantum dynamics in lattice spin systems with arbitraryS ≥ 1/2. We show that the GDTWA can accurately simulate dynamics of large ensembles in arbitrary dimensions. We apply it forS > 1/2 spin-models with dipolar long-range interactions, a scenario arising in recent experiments with magnetic atoms. We show that the method can capture beyond mean-field effects, not only at short times, but it also can correctly reproduce long time quantum-thermalization dynamics. We benchmark the method with exact diagonalization in small systems, with perturbation theory for short times, and with analytical predictions made for models which feature quantum-thermalization at long times. We apply our method to study dynamics in largeS > 1/2 spin-models and compute experimentally accessible observables such as Zeeman level populations, contrast of spin coherence, spin squeezing, and entanglement quantified by single-spin Renyi entropies. We reveal that largeSsystems can feature larger entanglement than correspondingS = 1/2 systems. Our analyses demonstrate that the GDTWA can be a powerful tool for modeling complex spin dynamics in regimes where other state-of-the art numerical methods fail. 
    more » « less
  5. In physics, it is crucial to identify operational measurement procedures to give physical meaning to abstract quantities. There has been significant effort to define time operationally using quantum systems, but the same has not been achieved for space. Developing an operational procedure to obtain information about the location of a quantum system is particularly important for a theory combining general relativity and quantum theory, which cannot rest on the classical notion of spacetime. Here, we take a first step towards this goal, and introduce a model to describe an extended material quantum system working as a position measurement device. Such a quantum ruler is composed of N harmonically interacting dipoles and serves as a (quantum) reference system for the position of another quantum system. We show that we can define a quantum measurement procedure corresponding to the superposition of positions, and that by performing this measurement we can distinguish when the quantum system is in a coherent or incoherent superposition in the position basis. The model is fully relational, because the only meaningful variables are the relative positions between the ruler and the system, and the measurement is expressed in terms of an interaction between the measurement device and the measured system. 
    more » « less