skip to main content


Title: Assessing resilience, equity, and sustainability of future visions across two urban scales
Abstract

Cities need to take swift action to deal with the impacts of extreme climate events. The co-production of positive visions offers the potential to not only imagine but also intervene in guiding change toward more desirable urban futures. While participatory visioning continues to be used as a tool for urban planning, there needs to be a way of comparing and evaluating future visions so that they can inform decision-making. Traditional tools for comparison tend to favor quantitative modeling, which is limited in its ability to capture nuances or normative elements of visions. In this paper, we offer a qualitative method to assess the resilience, equity, and sustainability of future urban visions and demonstrate its use by applying it to 11 visions from Phoenix, AZ. The visions were co-produced at two different governance scales: five visions were created at the village (or borough) scale, and six visions were created at the regional (or metropolitan) scale. Our analysis reveals different emphases in the mechanisms present in the visions to advance resilience, sustainability, and equity. In particular, we note that regional future visions align with a green sustainability agenda, whereas village visions focus on social issues and emphasize equity-driven approaches. The visions have implications for future trajectories, and the priorities that manifest at the two scales speak of the political nature of visioning and the need to explore how these processes may interact in complementary, synergistic, or antagonistic ways.

 
more » « less
Award ID(s):
1934933
NSF-PAR ID:
10443834
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Sustainability Science
Volume:
18
Issue:
6
ISSN:
1862-4065
Format(s):
Medium: X Size: p. 2549-2566
Size(s):
["p. 2549-2566"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Water is a critical natural resource that sustains the productivity of many economic sectors, whether directly or indirectly. Climate change alongside rapid growth and development are a threat to water sustainability and regional productivity. In this paper, we develop an extension to the economic input-output model to assess the impact of water supply disruptions to regional economies. The model utilizes the inoperability variable, which measures the extent to which an infrastructure system or economic sector is unable to deliver its intended output. While the inoperability concept has been utilized in previous applications, this paper offers extensions that capture the time-varying nature of inoperability as the sectors recover from a disruptive event, such as drought. The model extension is capable of inserting inoperability adjustments within the drought timeline to capture time-varying likelihoods and severities, as well as the dependencies of various economic sectors on water. The model was applied to case studies of severe drought in two regions: (1) the state of Massachusetts (MA) and (2) the US National Capital Region (NCR). These regions were selected to contrast drought resilience between a mixed urban–rural region (MA) and a highly urban region (NCR). These regions also have comparable overall gross domestic products despite significant differences in the distribution and share of the economic sectors comprising each region. The results of the case studies indicate that in both regions, the utility and real estate sectors suffer the largest economic loss; nonetheless, results also identify region-specific sectors that incur significant losses. For the NCR, three sectors in the top 10 ranking of highest economic losses are government-related, whereas in the MA, four sectors in the top 10 are manufacturing sectors. Furthermore, the accommodation sector has also been included in the NCR case intuitively because of the high concentration of museums and famous landmarks. In contrast, the Wholesale Trade sector was among the sectors with the highest economic losses in the MA case study because of its large geographic size conducive for warehouses used as nodes for large-scale supply chain networks. Future modeling extensions could potentially include analysis of water demand and supply management strategies that can enhance regional resilience against droughts. Other regional case studies can also be pursued in future efforts to analyze various categories of drought severity beyond the case studies featured in this paper. 
    more » « less
  2. Abstract

    Practitioners and researchers in geoscience education embrace collaboration applying ICON (Integrated, Coordinated, Open science, and Networked) principles and approaches which have been used to create and share large collections of educational resources, to move forward collective priorities, and to foster peer‐learning among educators. These strategies can also support the advancement of coproduction between geoscientists and diverse communities. For this reason, many authors from the geoscience education community have co‐created three commentaries on the use and future of ICON in geoscience education. We envision that sharing our expertise with ICON practice will be useful to other geoscience communities seeking to strengthen collaboration. Geoscience education brings substantial expertise in social science research and its application to building individual and collective capacity to address earth sustainability and equity issues at local to global scales The geoscience education community has expanded its own ICON capacity through access to and use of shared resources and research findings, enhancing data sharing and publication, and leadership development. We prioritize continued use of ICON principles to develop effective and inclusive communities that increase equity in geoscience education and beyond, support leadership and full participation of systemically non‐dominant groups and enable global discussions and collaborations.

     
    more » « less
  3. null (Ed.)
    Local business leaders, policy makers, elected officials, city planners, emergency managers, and private citizens are responsible for, and deeply affected by, the performance of critical supply chains and related infrastructures. At the center of critical supply chains is the food-energy-water nexus (FEW); a nexus that is key to a community’s wellbeing, resilience, and sustainability. In the 21st century, managing a local FEW nexus requires accurate data describing the function and structure of a community’s supply chains. However, data is not enough; we need data-informed conversation and technical and social capacity building among local stakeholders to utilize the data effectively. There are some resources available at the mesoscale and for food, energy, or water, but many communities lack the data and tools needed to understand connections and bridge the gaps between these scales and systems. As a result, we currently lack the capacity to manage these systems in small and medium sized communities where the vast majority of people, decisions, and problems reside. This study develops and validates a participatory citizen science process for FEW nexus capacity building and data-driven problem solving in small communities at the grassroots level. The FEWSION for Community Resilience (F4R) process applies a Public Participation in Scientific Research (PPSR) framework to map supply chain data for a community’s FEW nexus, to identify the social network that manages the nexus, and then to generate a data-informed conversation among stakeholders. F4R was piloted and co-developed with participants over a 2-year study, using a design-based research process to make evidence-based adjustments as needed. Results show that the F4R model was successful at improving volunteers’ awareness about nexus and supply chain issues, at creating a network of connections and communication with stakeholders across state, regional, and local organizations, and in facilitating data-informed discussion about improvements to the system. In this paper we describe the design and implementation of F4R and discuss four recommendations for the successful application of the F4R model in other communities: 1) embed opportunities for co-created PPSR, 2) build social capital, 3) integrate active learning strategies with user-friendly digital tools, and 4) adopt existing materials and structure. 
    more » « less
  4. Broadband infrastructure in urban parks may serve crucial functions including an amenity to boost overall park use and a bridge to propagate WiFi access into contiguous neighborhoods. This project: SCC:PG Park WiFi as a BRIDGE to Community Resilience has developed a new model —Build Resilience through the Internet and Digital Greenspace Exposure, leveraging off-the-shelf WiFi technology, novel algorithms, community assets, and local partnerships to lower greenspace WiFi costs. This interdisciplinary work leverages: computer science, information studies, landscape architecture, and public health. Collaboration methodologies and relational definitions across disciplines are still nascent —especially when paired with civic-engaged, applied research. Student researchers (UG/Grad) are excellent partners in bridging disciplinary barriers and constraints. Their capacity to assimilate multiple frameworks has produced refinements to the project’s theoretical lenses and suggested novel socio-technical methodology improvements. Further, they are excellent ambassadors to community partners and stakeholders. In BRIDGE, we tested two mechanisms to augment student research participation. In both, we leveraged a classic, curriculum-based model named the Partnership for Action Learning in Sustainability program (PALS). This campus-wide, community-engaged initiative pairs faculty and students with community partners. PALS curates economic, environmental, and social sustainability challenges and scopes projects to customize appropriate coursework that addresses identified challenges. Outcomes include: literature searches, wireframes, and design plans that target solutions to civic problems. Constraints include the short semester timeframe and curriculum-learning-outcome constraints. (1) On BRIDGE, Dr. Kweon executed a semester-based Landscape Architecture PALS 400-level-studio. 18 undergraduates conducted in-class and in-field work to assess community needs and proposed design solutions for future park-wide WiFi. Research topics included: community-park history, neighborhood demographics, case-study analysis, and land-cover characteristics. The students conducted an in-Park, community engagement session —via interactive posterboard surveys, to gain input on what park amenities might be redesigned or added to promote WiFi use. The students then produced seven re-design plans; one included a café/garden, with an eco-corridor that integrated technology with nature. (2) From the classic, curriculum-based PALS model we created a summer-intensive for our five research assistants, to stimulate interdisciplinary collaboration in their research tasks and co-analysis of project data products: experimental technical WiFi-setup, community survey results, and stakeholder needs-assessments. Students met weekly with each other and team leadership, exchanged journal articles, and attended joint research events. This model shows promise for integrating students more formally into an interdisciplinary research project. An end-of-intensive focus group highlighted, from the students’ perspective, the pro/cons of this model. Results: In contrasting the two mechanisms, our results include: Model 1 is tried-and-trued and produces standardized, reliable products. However, as work is group based, student independence is limited —to explore topics/themes of interest. Civic groups are typically thrilled with the diversity of action plans produced. Model 2 provides greater independence in student-learning outcomes, fosters interdisciplinary, “dictionary-building” that can be used by the full team, deepens methodological approaches, and allows for student stipend payments. Lessons learned: intensive time frame needed more research team support and ideally should be extended, when possible, over the full project-span. UMD-IRB#1785365-4; NSF-award: 2125526. 
    more » « less
  5. null (Ed.)
    Most people in the world live in urban areas, and their high population densities, heavy reliance on external sources of food, energy, and water, and disproportionately large waste production result in severe and cumulative negative environmental effects. Integrated study of urban areas requires a system-of-systems analytical framework that includes modeling with social and biophysical data. We describe preliminary work toward an integrated urban food-energy-water systems (FEWS) analysis using co-simulation for assessment of current and future conditions, with an emphasis on local (urban and urban-adjacent) food production. We create a framework to enable simultaneous analyses of climate dynamics, changes in land cover, built forms, energy use, and environmental outcomes associated with a set of drivers of system change related to policy, crop management, technology, social interaction, and market forces affecting food production. The ultimate goal of our research program is to enhance understanding of the urban FEWS nexus so as to improve system function and management, increase resilience, and enhance sustainability. Our approach involves data-driven co-simulation to enable coupling of disparate food, energy and water simulation models across a range of spatial and temporal scales. When complete, these models will quantify energy use and water quality outcomes for current systems, and determine if undesirable environmental effects are decreased and local food supply is increased with different configurations of socioeconomic and biophysical factors in urban and urban-adjacent areas. The effort emphasizes use of open-source simulation models and expert knowledge to guide modeling for individual and combined systems in the urban FEWS nexus. 
    more » « less