skip to main content


Title: Lithospheric Erosion in the Patagonian Slab Window, and Implications for Glacial Isostasy
Abstract

The Patagonian slab window has been proposed to enhance the solid Earth response to ice mass load changes in the overlying Northern and Southern Patagonian Icefields (NPI and SPI, respectively). Here, we present the first regional seismic velocity model covering the entire north‐south extent of the slab window. A slow velocity anomaly in the uppermost mantle indicates warm mantle temperature, low viscosity, and possibly partial melt. Low velocities just below the Moho suggest that the lithospheric mantle has been thermally eroded over the youngest part of the slab window. The slowest part of the anomaly is north of 49°S, implying that the NPI and the northern SPI overlie lower viscosity mantle than the southern SPI. This comprehensive seismic mapping of the slab window provides key evidence supporting the previously hypothesized connection between post‐Little Ice Age anthropogenic ice mass loss and rapid geodetically observed glacial isostatic uplift (≥4 cm/yr).

 
more » « less
Award ID(s):
1714662 1714154
NSF-PAR ID:
10443848
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
2
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Subduction of the very young (<15 Myr old) oceanic lithosphere of the Nazca plate in central to southern Colombia is observationally related to an unusually high and unusually variable amount of intermediate (>50 km) depth seismicity. From 2010 through 2019 89% of central and southern Colombia’s 11,466 intermediate depth events occurred between 3.5°N and 5.5°N, highlighting these unusual characteristics of the young slab. In addition, morphologic complexity and possible tears characterize the Nazca slab in Colombia and complicate mantle flow in the region. Prior SKS-phase shear-wave splitting results indicate sub-slab anisotropy is dominated by plate motion parallel-to-subparallel orientations in the region, suggesting the young slab has entrained a relatively thick portion of the sub-slab mantle. These observations suggest the subduction of young lithosphere has significant effects on both the overlying and underlying asthenosphere in the Colombia subduction zone. Here we use more than 10 years of data to calculate receiver functions for the Red Sismológica Nacional de Colombia’s network of broadband seismometers. These receiver functions allow us to tie these prior observations of the Colombia subduction zone to distinct, structural features of the slab. We find that the region of high seismicity corresponds to a low seismic velocity feature along the top of the subducting plate between 3.5°N and 5.5°N that is not present to the south. Moderately elevated P-wave velocity to S-wave velocity ratios are also observed within the slab in the north. This feature likely represents hydrated slab mantle and/or uneclogitized oceanic crust extending to a deeper depth in the north of the region which may provide fluids to drive slab seismicity. We further find evidence for a thick layer of material along the slab’s lithosphere-asthenosphere boundary characterized by spatially variable anisotropy. This feature likely represents entrained asthenosphere at the base of the plate sheared by both the overlying plate and complex flow related to proposed slab tears just north and south of the study region. These observations highlight how structural observations provide key contextual constraints on short-term (seismogenic) and long-term (anisotropic fabric) dynamic processes in the Colombia subduction zone. Plain-language Summary The Nazca oceanic plate is very young (<15 million years old) where it is pulled or subducted beneath the South America plate in central and southern Colombia. Earthquakes occurring in the subducted Nazca plate at depths greater than 50 km are nearly 9x more common in central Colombia than in southern Colombia. The subducted Nazca plate also has a complex shape in this region and may have been torn both in northern Colombia and to the south near the Colombia-Ecuador border. The slow flow of mantle rock beneath the subducted plate is believed to be affected by this and earlier studies have inferred this flow is mostly in the same direction as the subducting plate's motion. We have used 10+ years of data to calculate receiver functions, which can detect changes in the velocity of seismic waves at the top and bottom of the subducted plate to investigate these features. We found that the Nazca plate is either hydrated or has rocks with lower seismic velocities at its top in the central part of Colombia where earthquakes are common. We also find that a thick layer of mantle rock at the base of the subducted plate has been sheared. 
    more » « less
  2. Southern Andean glaciers contribute substantially to global sea-level rise. Unfortunately, mass balance estimates prior to 2000 are limited, hindering our understanding of the evolution of glacier mass changes over time. Elevation changes over 1976/1979 to 2000 derived from historical KH-9 Hexagon imagery and NASADEM provide the basis for geodetic mass balance estimates for subsets of the Northern Patagonian Icefield (NPI) and the Southern Patagonian Icefield (SPI), extending current mass balance observations by ∼20 years. Geodetic mass balances were −0.63 ± 0.03 m w.e. yr −1 for 63% of the NPI and −0.33 ± 0.05 m w.e. yr −1 for 52% of the SPI glacierized areas for this historical period. We also extend previous estimates temporally by 25% using NASADEM and ASTER elevation trends for the period 2000 to 2020, and find geodetic mass balances of −0.86 ± 0.03 m w.e. yr −1 for 100% of the NPI and −1.23 ± 0.04 m w.e. yr −1 for 97% of the SPI glacierized areas. 2000–2020 aggregations for the same areas represented in the 1976/1979 to 2000 estimates are −0.78 ± 0.03 m w.e. yr −1 in the NPI and −0.80 ± 0.04 m w.e. yr −1 on the SPI. The significant difference in SPI geodetic mass balance in the modern period for 100% vs. 52% of the glacierized area suggests subsampling leads to significant biases in regional mass balance estimates. When we compare the same areas in each time period, the results highlight an acceleration of ice loss by a factor of 1.2 on the NPI and 2.4 on the SPI in the 21st century as compared to the 1976/1979 to 2000 period. While lake-terminating glaciers show the most significant increase in mass loss rate from 1976/1979–2000 to 2000–2020, mass balance trends are highly variable within glaciers of all terminus environments, which suggests that individual glacier sensitivity to climate change is dependent on a multitude of morphological and climatological factors. 
    more » « less
  3. Abstract

    Paleoshorelines serve as measures of ancient sea level and ice volume but are affected by solid Earth deformation including processes such as glacial isostatic adjustment (GIA) and mantle dynamic topography (DT). The early Pliocene Epoch is an important target for sea‐level reconstructions as it contains information about the stability of ice sheets during a climate warmer than today. Along the southeastern passive margin of Argentina, three paleoshorelines date to early Pliocene times (4.8–5.5 Ma), and their variable present‐day elevations (36–180 m) reflect a unique topographic deformation signature. We use a mantle convection model to back‐advect present‐day buoyancy variations, including those that correspond to the Patagonian slab window. Varying the viscosity and initial tomography‐derived mantle buoyancy structures allows us to compute a suite of predictions of DT change that, when compared to GIA‐corrected shoreline elevations, makes it possible to identify both the most likely convection parameters and the most likely DT change. Our simulations illuminate an interplay of upwelling asthenosphere through the Patagonian slab window and coincident downwelling of the subducted Nazca slab in the mantle transition zone. This flow leads to differential upwarping of the southern Patagonian foreland since early Pliocene times, in line with the observations. Using our most likely DT change leads to an estimate of global mean sea level of 17.5 ± 6.4 m (1σ) in the early Pliocene Epoch. This confirms that sea level was significantly higher than present and can be used to calibrate ice sheet models.

     
    more » « less
  4. Abstract

    Geological processes in Southern Patagonia are affected by the Patagonian slab window, formed by the subduction of the Chile Ridge and subsequent northward migration of the Chile Triple Junction. Using shear wave splitting analysis, we observe strong splitting of up to 2.5 s with an E‐W fast direction just south of the triple junction and the edge of the subducting Nazca slab. This region of strong anisotropy is coincident with low uppermost mantle shear velocities and an absence of mantle lithosphere, indicating that the mantle flow occurs in a warm, low‐viscosity, 200–300 km wide shallow mantle channel just to the south of the Nazca slab. The region of flow corresponds to a volcanic gap caused by depleted mantle compositions and absence of slab‐derived water. In most of Patagonia to the south of this channel, splitting fast directions trend NE‐SW consistent with large‐scale asthenospheric flow.

     
    more » « less
  5. Abstract

    Seismic tomography has demonstrated that the shear‐wave velocity is relatively high over a 3,000‐km wide region in the lowermost mantle beneath southern and eastern Asia. This seismic anomaly demarcates the current position of slab remnants that may have subducted in the Cretaceous. To further characterize the seismic structure at smaller scales, we measure 929 residual travel time differences (δt) between the phasesScSandSusing recordings of eight earthquakes beneath the Indian Ocean at stations from the Chinese Digital Seismic Network. We interpret variations of δtup to 10 s as due to horizontal shear‐velocity variations in D″ beneath northern India, Nepal, and southwestern China. The shear velocity can vary by as much as 7% over distances shorter than 300 km. Our observations provide additional observational evidence that compositional heterogeneity and possibly melt contribute to the seismic structure of the lower mantle characterized by long‐term subduction and mantle downwelling.

     
    more » « less