skip to main content


Title: Comment on “Groundwater Affects the Geomorphic and Hydrologic Properties of Coevolved Landscapes” by Litwin et al.
Abstract

The objective of this comment is to correct two sets of statements in Litwin et al. (2022,https://doi.org/10.1029/2021JF006239), which consider our research work (Bonetti et al., 2018,https://doi.org/10.1098/rspa.2017.0693; Bonetti et al., 2020,https://doi.org/10.1073/pnas.1911817117). We clarify here that (a) the specific contributing area is defined in the limit of an infinitesimal contour length instead of the product of a reference contour width (Bonetti et al., 2018,https://doi.org/10.1098/rspa.2017.0693), and (b) not all solutions obtained from the minimalist landscape evolution model of Bonetti et al. (2020,https://doi.org/10.1073/pnas.1911817117) are rescaled copies of each other. We take this opportunity to demonstrate that the boundary conditions impact the obtained solutions, which has not been considered in the dimensional analysis of Litwin et al. (2022,https://doi.org/10.1029/2021JF006239). We clarify this point by using dimensional analysis and numerical simulations for a square domain, where only one horizontal length scale (the side lengthl) enters the physical law.

 
more » « less
NSF-PAR ID:
10443862
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
127
Issue:
10
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We examine the behavior of natural basaltic and trachytic samples during paleointensity experiments on both the original and laboratory‐acquired thermal remanences and characterize the samples using proxies for domain state including curvature (k) and the bulk domain stability parameters of Paterson (2011,https://doi.org/10.1029/2011JB008369) and Paterson et al. (2017,https://doi.org/10.1073/pnas.1714047114), respectively. A curvature value of 0.164 (suggested by Paterson, 2011,https://doi.org/10.1029/2011JB008369) as a critical threshold that separates single‐domain‐like remanences from multidomain‐like remanances on the original paleointensity data was used to separate samples into “straight” (single‐domain‐like) and “curved” (multidomain‐like) groups. Specimens from the two sample sets were given a “fresh” thermal remanent magnetization in a 70 μT field and subjected to an infield‐zerofield, zerofield‐infield (IZZI)‐type (Yu et al., 2004,https://doi.org/10.1029/2003GC000630) paleointensity experiment. The straight sample set recovered the laboratory field with high precision while the curved set had much more scattered results (70.5 ± 1.5 and 71.9 ± 5.2 μT, respectively). The average intensity of both sets for straight and curved was quite close to the laboratory field of 70 μT, however, suggesting that if experiments contain a sufficient number of specimens, there does not seem to be a large bias in the field estimate. We found that the dependence of the laboratory thermal remanent magnetization on cooling rate was significant in most samples and did not depend on domain states inferred from proxies based on hysteresis measurements and should be estimated for all samples whose cooling rates differ from that used in the laboratory.

     
    more » « less
  2. Abstract

    Molnar and England (1990,https://doi.org/10.1029/JB095iB04p04833) introduced equations using a semianalytical approach that approximate the thermal structure of the forearc regions in subduction zones. A detailed new comparison with high‐resolution finite element models shows that the original equations provide robust predictions and can be improved by a few modifications that follow from the theoretical derivation. The updated approximate equations are shown to be quite accurate for a straight‐dipping slab that is warmed by heat flowing from its base and by shear heating at its top. The approximation of radiogenic heating in the crust of the overriding plate is less accurate but the overall effect of this heating mode is small. It is shown that the previous and updated approximate equations become increasingly inaccurate with decreasing thermal parameter and increasing variability of slab dip. It is also shown that the approximate equations cannot be extrapolated accurately past the brittle‐ductile transition. Conclusions in a recent paper (Kohn et al., 2018,https://doi.org/10.1073/pnas.1809962115) that modest amount of shear heating can explain the thermal conditions of past subduction from the exhumed metamorphic rock record are invalid due to a number of compounding errors in the application of the Molnar and England (1990,https://doi.org/10.1029/JB095iB04p04833) equations past the brittle‐ductile transition. The use of the improved approximate equations is highly recommended provided their limitations are taken into account. For subduction zones with variable dip and/or low thermal parameter finite element modeling is recommended.

     
    more » « less
  3. Abstract

    Wave breaking induced bubbles contribute a significant part of air‐sea gas fluxes. Recent modeling of the sea state dependent CO2flux found that bubbles contribute up to ∼40% of the total CO2air‐sea fluxes (Reichl & Deike, 2020,https://doi.org/10.1029/2020gl087267). In this study, we implement the sea state dependent bubble gas transfer formulation of Deike and Melville (2018,https://doi.org/10.1029/2018gl078758) into a spectral wave model (WAVEWATCH III) incorporating the spectral modeling of the wave breaking distribution from Romero (2019,https://doi.org/10.1029/2019gl083408). We evaluate the accuracy of the sea state dependent gas transfer parameterization against available measurements of CO2gas transfer velocity from 9 data sets (11 research cruises, see Yang et al. (2022,https://doi.org/10.3389/fmars.2022.826421)). The sea state dependent parameterization for CO2gas transfer velocity is consistent with observations, while the traditional wind‐only parameterization used in most global models slightly underestimates the observations of gas transfer velocity. We produce a climatology of the sea state dependent gas transfer velocity using reanalysis wind and wave data spanning 1980–2017. The climatology shows that the enhanced gas transfer velocity occurs frequently in regions with developed sea states (with strong wave breaking and high significant wave height). The present study provides a general sea state dependent parameterization for gas transfer, which can be implemented in global coupled models.

     
    more » « less
  4. Abstract

    On the dayside of August 25–26, 2018 (main phase, MP of the storm), we unveiled the storm time effects on the latitudinal distribution of ionospheric total electron content (TEC). We used 17 and 19 Global Positioning System receivers in American and Asian‐Australian sectors, respectively. Also, we employed a pair of magnetometers in each sector to unveil storm time effects on verticalE×Bupward directed inferred drift velocity in the F region ionosphere. Also used is NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite airglow instrument to investigate storm time changes in neutral composition, O/N2ratio. In this investigation, we corrected the latitudinal offset found in the works of Younas et al. (2020,https://doi.org/10.1029/2020JA027981). Interestingly, we observed that a double‐humped increase (DHI) seen at a middle latitude station (MGUE, ∼22°S) after the MP on the dayside in American sector (Younas et al., 2020,https://doi.org/10.1029/2020JA027981) did straddle ∼23.58°N and ∼22°S. On August 25, 2018, storm commencement was evident in Sym‐H (∼−8 nT) around 18:00 UT. It later became intensified (∼−174 nT) on August 26 around 08:00 UT. During storm's MP (after the MP), fountain effect operation was significantly enhanced (inhibited) in Asian‐Australian (American) sector. Middle latitude TEC during MP got reduced in American sector (13:00 LT–15:40 LT) compared to those seen in Asian‐Australian sector (13:00 LT–15:40 LT). The northern equatorial peak (∼25 TECU) seen at IHYO (14:00 LT) after MP in the American sector is higher when compared with that (∼21 TECU) seen at PPPC (11:40 LT) during MP in Asian‐Australian sector.

     
    more » « less
  5. Abstract

    High‐impact poor air quality events, such as Beijing's so‐called “Airpocalypse” in January 2013, demonstrate that short‐lived poor air quality events can have significant effects on health and economic vitality. Poor air quality events result from the combination of the emission of pollutants and meteorological conditions favorable to their accumulation, which include limited scavenging, dispersion, and ventilation. The unprecedented nature of events such as the 2013 Airpocalypse, in conjunction with our nonstationary climate, motivate an assessment of whether climate change has altered the meteorological conditions conducive to poor winter air quality in Beijing. Using three indices designed to quantify the meteorological conditions that support poor air quality and drawing on the attribution methods of Diffenbaugh et al. (2017,https://doi.org/10.1073/pnas.1618082114), we assess (i) the contribution of observed trends to the magnitude of events, (ii) the contribution of observed trends to the probability of events, (iii) the return interval of events in the observational record, preindustrial model‐simulated climate and historical model‐simulated climate, (iv) the probability of the observed trend in the preindustrial and historical model‐simulated climates, and (v) the relative influences of anthropogenic forcing and natural variability on the observed trend. We find that anthropogenic influence has had a small effect on the probability of the January 2013 event in all three indices but has increased the probability of a long‐term positive trend in two out of three indices. This work provides a framework for both further understanding the role of climate change in air quality and expanding the scope of event attribution.

     
    more » « less