skip to main content

Title: Investigating the Accuracy, Precision, and Cooling Rate Dependence of Laboratory‐Acquired Thermal Remanences During Paleointensity Experiments

We examine the behavior of natural basaltic and trachytic samples during paleointensity experiments on both the original and laboratory‐acquired thermal remanences and characterize the samples using proxies for domain state including curvature (k) and the bulk domain stability parameters of Paterson (2011, and Paterson et al. (2017,, respectively. A curvature value of 0.164 (suggested by Paterson, 2011, as a critical threshold that separates single‐domain‐like remanences from multidomain‐like remanances on the original paleointensity data was used to separate samples into “straight” (single‐domain‐like) and “curved” (multidomain‐like) groups. Specimens from the two sample sets were given a “fresh” thermal remanent magnetization in a 70 μT field and subjected to an infield‐zerofield, zerofield‐infield (IZZI)‐type (Yu et al., 2004, paleointensity experiment. The straight sample set recovered the laboratory field with high precision while the curved set had much more scattered results (70.5 ± 1.5 and 71.9 ± 5.2 μT, respectively). The average intensity of both sets for straight and curved was quite close to the laboratory field of 70 μT, however, suggesting that if experiments contain a sufficient number of specimens, there does not seem to be a large bias in the field estimate. We found that the dependence of the laboratory thermal remanent magnetization on cooling rate was significant in most samples and did not depend on domain states inferred from proxies based on hysteresis measurements and should be estimated for all samples whose cooling rates differ from that used in the laboratory.

more » « less
Award ID(s):
1827263 1547263
Author(s) / Creator(s):
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Page Range / eLocation ID:
p. 383-397
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Molnar and England (1990, introduced equations using a semianalytical approach that approximate the thermal structure of the forearc regions in subduction zones. A detailed new comparison with high‐resolution finite element models shows that the original equations provide robust predictions and can be improved by a few modifications that follow from the theoretical derivation. The updated approximate equations are shown to be quite accurate for a straight‐dipping slab that is warmed by heat flowing from its base and by shear heating at its top. The approximation of radiogenic heating in the crust of the overriding plate is less accurate but the overall effect of this heating mode is small. It is shown that the previous and updated approximate equations become increasingly inaccurate with decreasing thermal parameter and increasing variability of slab dip. It is also shown that the approximate equations cannot be extrapolated accurately past the brittle‐ductile transition. Conclusions in a recent paper (Kohn et al., 2018, that modest amount of shear heating can explain the thermal conditions of past subduction from the exhumed metamorphic rock record are invalid due to a number of compounding errors in the application of the Molnar and England (1990, equations past the brittle‐ductile transition. The use of the improved approximate equations is highly recommended provided their limitations are taken into account. For subduction zones with variable dip and/or low thermal parameter finite element modeling is recommended.

    more » « less
  2. Abstract

    The objective of this comment is to correct two sets of statements in Litwin et al. (2022,, which consider our research work (Bonetti et al., 2018,; Bonetti et al., 2020, We clarify here that (a) the specific contributing area is defined in the limit of an infinitesimal contour length instead of the product of a reference contour width (Bonetti et al., 2018,, and (b) not all solutions obtained from the minimalist landscape evolution model of Bonetti et al. (2020, are rescaled copies of each other. We take this opportunity to demonstrate that the boundary conditions impact the obtained solutions, which has not been considered in the dimensional analysis of Litwin et al. (2022, We clarify this point by using dimensional analysis and numerical simulations for a square domain, where only one horizontal length scale (the side lengthl) enters the physical law.

    more » « less
  3. Abstract

    Absolute paleointensity (API) of the geomagnetic field can be estimated from volcanic rocks by comparing the natural remanent magnetization (NRM) to a laboratory‐induced thermoremanent magnetization (Lab‐TRM). Plots of NRM unblocking versus Lab‐TRM blocking from API experiments often exhibit nonideal curvature, which can result in biased estimates. Previous work showed that curvature can increase with age; however, selection criteria designed to eliminate such behavior yielded accurate estimates for two‐year‐aged specimens (70.3 ± 3.8 μT;N = 96 specimens out of 120 experiments). API can also be estimated in coercivity space. Here, we use the Tsunakawa‐Shaw (TS) method applied to 20 specimens aged in the laboratory field of 70.0 μT for 4 years, after acquisition of zero‐age (fresh) Lab‐TRM in the same field. Selection criteria for the TS experiment also yielded accurate results (68.5 ± 4.5 μT;N = 17 specimens). In thermal API experiments, curvature is related to internal structure with more single domain‐like behavior having the least curvature. Here we show that the fraction of anhysteretic remanent magnetization demagnetized by low‐temperature treatment was larger for samples with larger thermal curvatures suggesting a magnetocrystalline anisotropy source. We also tested experimental remedies that have been proposed to improve the accuracy of paleointensity estimates. In particular, we test the efficacy of the multi‐specimen approach and a strategy pretreating specimens with low field alternating field demagnetization prior to the paleointensity experiment. Neither yielded accurate results.

    more » « less
  4. Abstract

    A foundational assumption in paleomagnetism is that the Earth's magnetic field behaves as a geocentric axial dipole (GAD) when averaged over sufficient timescales. Compilations of directional data averaged over the past 5 Ma yield a distribution largely compatible with GAD, but the distribution of paleointensity data over this timescale is incompatible. Reasons for the failure of GAD include: (a) Arbitrary “selection criteria” to eliminate “unreliable” data vary among studies, so the paleointensity database may include biased results. (b) The age distribution of existing paleointensity data varies with latitude, so different latitudinal averages represent different time periods. (c) The time‐averaged field could be truly non‐dipolar. Here, we present a consistent methodology for analyzing paleointensity results and comparing time‐averaged paleointensities from different studies. We apply it to data from Plio/Pleistocene Hawai'ian igneous rocks, sampled from fine‐grained, quickly cooled material (lava flow tops, dike margins and scoria cones) and subjected to the IZZI‐Thellier technique; the data were analyzed using the Bias Corrected Estimation of Paleointensity method of Cych et al. (2021,, which produces accurate paleointensity estimates without arbitrarily excluding specimens from the analysis. We constructed a paleointensity curve for Hawai'i over the Plio/Pleistocene using the method of Livermore et al. (2018,, which accounts for the age distribution of data. We demonstrate that even with the large uncertainties associated with obtaining a mean field from temporally sparse data, our average paleointensities obtained from Hawai'i and Antarctica (reanalyzed from Asefaw et al., 2021, are not GAD‐like from 0 to 1.5 Ma but may be prior to that.

    more » « less
  5. Abstract

    Fine‐grained, Ti‐poor titanomagnetite in the ~12.7 Ma Tiva Canyon (TC) Tuff systematically increases in grain size from superparamagnetic (SP) at the flow base to single domain (SD) at a few meters height. This allows us to examine the role of grain‐size variation on paleointensity, within the transition from SP to stable SD. We present magnetic properties from two previously unreported sections of the TC Tuff, as well as Thellier‐type paleointensity estimates from the lowermost ~7.0 m of the flow. Magnetic hysteresis, frequency‐dependent susceptibility, and thermomagnetic data show that sample grain‐size distribution is dominated by SP in the lower ~3.6 m, transitioning upwards to mostly stable SD. Paleointensity results are closely tied to stratigraphic height and to magnetic properties linked to domain state. SD samples have consistent absolute paleointensity values of 28.5 ± 1.94 μT (VADM of 51.3 ZAm2) and behaved ideally during paleointensity experiments. The samples including a significant SP fraction have consistently higher paleointensities and less ideal behavior but would likely pass many traditional quality‐control tests. We interpret the SD remanence to be a primary thermal remanent magnetization but discuss the possibility of a partial thermal‐chemical remanent magnetization if microcrystal growth continued at T < Tcand/or the section is affected by post‐emplacement vapor‐phase alteration. The link between paleointensity and domain state is stronger than correlations with water content or other evidence of alteration and suggests that the presence of a significant SP population may adversely impact paleointensity results, even in the presence of a stable SD fraction.

    more » « less