Abstract Tropical cyclone (TC) rainfall hazard assessment is subject to the bias in TC climatology estimation from climate simulations or synthetic downscaling. In this study, we investigate the uncertainty in TC rainfall hazard assessment induced by this bias using both rain gauge and radar observations and synthetic-storm-model-coupled TC rainfall simulations. We identify the storm’s maximum intensity, impact duration, and minimal distance to the site to be the three most important storm parameters for TC rainfall hazard, and the relationship between the important storm parameters and TC rainfall can be well captured by a physics-based TC rainfall model. The uncertainty in the synthetic rainfall hazard induced by the bias in TC climatology can be largely explained by the bias in the important storm parameters simulated by the synthetic storm model. Correcting the distribution of the most biased parameter may significantly improve rainfall hazard estimation. Bias correction based on the joint distribution of the important parameters may render more accurate rainfall hazard estimations; however, the general technical difficulties in resampling from high dimensional joint probability distributions prevent more accurate estimations in some cases. The results of the study also support future investigation of the impact of climate change on TC rainfall hazards through the lens of future changes in the identified important storm parameters.
more »
« less
Assessing North Atlantic Tropical Cyclone Rainfall Hazard Using Engineered-Synthetic Storms and a Physics-Based Tropical Cyclone Rainfall Model
Abstract In this study, we design a statistical method to couple observations with a physics-based tropical cyclone (TC) rainfall model (TCR) and engineered-synthetic storms for assessing TC rainfall hazard. We first propose a bias-correction method to minimize the errors induced by TCR via matching the probability distribution of TCR-simulated historical TC rainfall with gauge observations. Then we assign occurrence probabilities to engineered-synthetic storms to reflect local climatology, through a resampling method that matches the probability distribution of a newly proposed storm parameter named rainfall potential (POT) in the synthetic dataset with that in the observation. POT is constructed to include several important storm parameters for TC rainfall such as TC intensity, duration, and distance and environmental humidity near landfall, and it is shown to be correlated with TCR-simulated rainfall. The proposed method has a satisfactory performance in reproducing the rainfall hazard curve in various locations in the continental United States; it is an improvement over the traditional joint probability method (JPM) for TC rainfall hazard assessment.
more »
« less
- Award ID(s):
- 1854993
- PAR ID:
- 10443908
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Applied Meteorology and Climatology
- Volume:
- 62
- Issue:
- 8
- ISSN:
- 1558-8424
- Format(s):
- Medium: X Size: p. 1039-1053
- Size(s):
- p. 1039-1053
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Tropical cyclones (TCs) are drivers of extreme rainfall and surge, but the current and future TC rainfall–surge joint hazard has not been well quantified. Using a physics-based approach to simulate TC rainfall and storm tides, we show drastic increases in the joint hazard from historical to projected future (SSP5–8.5) conditions. The frequency of joint extreme events (exceeding both hazards’ historical 100-year levels) may increase by 7–36-fold in the southern US and 30–195-fold in the Northeast by 2100. This increase in joint hazard is induced by sea-level rise and TC climatology change; the relative contribution of TC climatology change is higher than that of sea-level rise for 96% of the coast, largely due to rainfall increases. Increasing storm intensity and decreasing translation speed are the main TC change factors that cause higher rainfall and storm tides and up to 25% increase in their dependence.more » « less
-
Tropical cyclone rainfall (TCR) extensively affects coastal communities, primarily through inland flooding. The impact of global climate changes on TCR is complex and debatable. This study uses an XGBoost machine learning model with 19-year meteorological data and hourly satellite precipitation observations to predict TCR for individual storms. The model identifies dust optical depth (DOD) as a key predictor that enhances performance evidently. The model also uncovers a nonlinear and boomerang-shape relationship between Saharan dust and TCR, with a TCR peak at 0.06 DOD and a sharp decrease thereafter. This indicates a shift from microphysical enhancement to radiative suppression at high dust concentrations. The model also highlights meaningful correlations between TCR and meteorological factors like sea surface temperature and equivalent potential temperature near storm cores. These findings illustrate the effectiveness of machine learning in predicting TCR and understanding its driving factors and physical mechanisms.more » « less
-
Abstract In this study, we investigate both the changes of tropical cyclone (TC) rainfall hazard in the United States under climate change and the relative importance of the factors that cause the changes. We find that under the SSP5 8.5 scenario, the 100‐year TC rainfall level can increase by up to 320% along the U.S. coastline by the end of this century. The influence of TC rainfall‐producing ability increase is more significant than the influence of TC frequency increase on the increase of the 100‐year TC rainfall level (up to 180% vs. 60% increase). Among the different physical drivers for the increase in storm rainfall‐producing ability, the increase of TC intensity is the leading factor, followed by changes in TC duration and atmospheric temperature. The projected increase of TC rainfall hazard is robust against the uncertainty in the TC frequency projection.more » « less
-
Abstract Tropical cyclone (TC) hazards coupled with dense urban development along the coastline have resulted in trillions in US damages over the past several decades, with an increasing trend in losses in recent years. So far, this trend has been driven by increasing coastal development. However, as the climate continues to warm, changing TC climatology may also cause large changes in coastal damages in the future. Approaches to quantifying regional TC risk typically focus on total storm damage. However, it is crucial to understand the spatial footprint of TC damage and ultimately the spatial distribution of TC risk. Here, we quantify the magnitude and spatial pattern of TC risk (in expected annual damage) across the US from wind, storm surge, and rainfall using synthetic TCs, physics-based hazard models, and a county-level statistical damage model trained on historical TC data. We then combine end-of-century TC hazard simulations with US population growth and wealth increase scenarios (under the SSP2 4.5 emission scenario) to investigate the sensitivity of changes in TC risk across the US Atlantic and Gulf coasts. We find that not directly accounting for the effects of rainfall and storm surge results in much lower risk estimates and smaller future increases in risk. TC climatology change and socioeconomic change drive similar magnitude increases in total expected annual damage across the US (roughly 160%), and that their combined effect (633% increase) is much higher.more » « less
An official website of the United States government
